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Abstract

In the first part of this thesis we deal with the theory of hyperplane arrangements,
that are (finite) collections of hyperplanes in a (finite-dimensional) vector space. If
A is an arrangement, the main topological object associated with it is its complement
M(A) (Definition 1.6), and the main combinatorial object is its intersection poset L(A)
(Definition 1.10). Many studies have been done in order to understand what topological
properties of M(A) can be inferred from the knowledge of the combinatorial data of
L(A).

In the thesis we focus on the characteristic variety V(A) associated with an arrange-
ment A (Definition 3.1), in an effort to uncover some possible combinatorial description
of it. Characteristic varieties have been studied for some years and information about
them could shed more light on other topological objects, such as the so-called Milnor
fibre of an arrangement. Unfortunately there are not many examples of computed
characteristic varieties in the literature, because the algorithms involved require many
computational resources and are both time- and memory-consuming. To overcome this
problem, we developed some new algorithms that are able to compute characteristic
varieties for general arrangements. In Chapter 4 we describe them in full details,
together with actual SageMath code, so that other researchers could follow our path; in
Chapter 5 we collect the results in a little catalogue. We tried to evince some general
combinatorial pattern from them (see Section 3.7), but we leave our considerations in
conjecture form.

The second part of the thesis is focused on toric arrangements, which are finite
collections of subtori (called layers in this context) in the complex algebraic torus. In par-
ticular, we follow two articles by De Concini and Gaiffi [11, 12] in which they compute
projective wonderful models for the complement of a toric arrangement (Definition 6.13)
and a presentation of their integer cohomology rings. Also in this case we develop
an algorithm that is able to produce examples of such rings (Chapter 7). This is a
little step, but we hope that the possibility to compute more examples, together with
better and more efficient algorithms, can greatly improve the understanding of these
topological objects.
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Introduction

It is easy to explain what a hyperplane arrangement is, even to a child, at least in low
dimension: just draw a bunch of lines on a sheet of paper. Despite their apparent
innocence, though, hyperplane arrangements have been keeping busy mathematicians
for some 60 years, and not everything about them is well-understood.

The theory of hyperplane arrangements lies in the intersection of several branches
of mathematics, mainly combinatorics, algebra and topology. A major question is
how the different aspects of an arrangement interact with each other. In particular,
we would like to know what algebraic and topological properties of an arrangement
depend only on the combinatorial data associated with it. These data are encoded in
the intersection poset L(A) of an arrangement A: it is the poset whose elements are all
the non-empty intersections of some hyperplanes of the arrangement, partially ordered
by reverse inclusion (Definition 1.10).

This question does actually make sense, because there are examples of important
algebraic and topological objects that fall in both categories. The cohomology ring
of the complement of an arrangement does depend only on the intersection poset: it
is isomorphic to the Orlik-Solomon algebra, which is defined in terms of L(A). On
the other hand, the fundamental group of the complement does not depend only on
L(A): Rybnikov [39] successfully built a pair of arrangements which have isomorphic
intersection posets, but non-isomorphic fundamental groups of the complements.

Among the topological objects for which it is still unknown whether they are
combinatorially determined, we chose to study the characteristic variety V(A) of an ar-
rangement. It is defined as the jumping locus of the cohomology with local coefficients
of the complement of the arrangement (Definition 3.1), and can be viewed as a subset
of the complex torus (C∗)n, where n is the number of hyperplanes of the arrangement.
It is known that it is an algebraic variety: to be more precise, Arapura’s Theorem [1]
states that it is a finite union of possibly translated subtori of (C∗)n.

The study of the characteristic varieties is significant per se, but a better under-
standing of their properties could shed light also on open problems related to other
topological objects. For example, the homology of the Milnor fibre can be retrieved
from the characteristic variety, together with its monodromy action. Several authors
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x Introduction

are actively searching for how much information about the Milnor fibre is possible to
induce from the combinatorics, see for example [3, 42, 47, 48].

We know that the irreducible components of the characteristic variety are algebraic
tori, thanks to Arapura’s Theorem; some of them pass through the point (1, . . . , 1) and
some don’t: the former are “homogeneous” components, the latter are “translated”
ones. Translated components do exist indeed, and the first 1-dimensional one was
found in [46]. It is known that the homogeneous part of the characteristic variety is
combinatorially determined, because the homogeneous components are in 1-1 corre-
spondence with the components of the resonance variety R(A), which is defined in terms
of the Orlik-Solomon algebra. There are more explicit combinatorial constructions that
allow us to compute the components of the resonance variety, such as neighbourly
partitions [23] and multinets [24]. Positive-dimensional components of the charac-
teristic variety (also translated ones) have been described in terms of morphisms of
algebraic varieties [19, Theorem 6.7], but zero-dimensional translated components are
still mysterious.

One of the main problems that we found while collecting information about the
translated components of the characteristic varieties is the lack of examples. Suciu [45,
46] and Cohen [7] provide some of them, but they are too few to try to induce a general
behaviour. Characteristic varieties can be realized as zero locus of the ideal of the
minors of the Alexander matrix (Theorem 3.6). Alternatively, they can be computed
directly using an algebraic complex defined by Salvetti and Settepanella [43]. In both
cases, the algorithms involve the computation of a huge amount of minors, which
becomes unfeasible when the number of hyperplanes exceeds 10.

After the definition of a new, better algorithm, we managed to compute characteris-
tic varieties of line arrangements that have not appeared in literature as far as we know.
We collected the results in a catalogue, to which the whole Chapter 5 is dedicated. It
appears that, at least in the arrangements that we consider, zero-dimensional translated
components are not so rare. During the analysis of the results, we found something
unexpected: we found a way that allows us to obtain the translated components directly from
the combinatorial data in almost all cases. We don’t mean that we have a combinatorial
description of the translated components: if we know that such a component exists,
then we are able to recover it also in a combinatorial way (except in one case).

Our combinatorial method relies on the notion of neighbourly partitions, which
we already recalled when talking about the resonance variety. In particular, if π is a
neighbourly partition, a homogeneous component of the characteristic variety can be
recovered from the zero locus of the ideal

I(π) :=

n+1∏
j=1

Tj − 1

+

∏
j∈P

Tj − 1

∣∣∣∣∣∣ P ∈ P


where P is the set of the singular points not contained in a single block of π. Now, it is
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known that a homogeneous component has dimension at least 2, so partitions π such
that dim I(π) 6 1 have no use in the description of the homogeneous part of V(A).
However, the definition of I(π) does not require that π is neighbourly: what happens
then if we compute I(π) for other partitions?

Proposition. For all arrangements A in our catalogue except A(11, 1), if πA is the double
points partition of A, the essential translated components of V(A) (if exist) appear as the zero
locus of one ideal of the primary decomposition of (the radical of) I(πA). For A(11, 1) the two
essential translated points do belong to the zero locus of I(π), but only as embedded components.

All examples that we computed seem to lead to the conclusion that the translated
part of the characteristic variety is combinatorial, but a lot of work has still to be done.

This strange behaviour of the translated components with respect to the neighbourly
partition wouldn’t have been possible without an improvement of the algorithm that
computes the characteristic variety. We managed to write a version of the algorithm
that does not require the computation of all the minors: this new algorithm tries to
reduce the matrix in echelon form in order to compute its rank. The problem, of course,
is that the coefficients are polynomials, so they can’t be used to reduce the matrix
unless we assume that they are different than zero. Therefore, whenever the algorithm
tries to use a polynomial, it splits its computation tree, opening two new branches: in
one of them, the polynomial is assumed to be zero, while in the other it is assumed
to be different than zero. The algorithm then continues its computation on the two
branches independently, and in the end it collects the results of all branches. Despite
the large number of bifurcations, this new algorithm is far more efficient than the one
we used previously, reducing computation time from weeks to minutes. We believe
that this algorithm will help other researchers to study new examples, therefore we
decided to include the actual code here. It is written in the SageMath language [40],
a modern and powerful computer algebra system that itself contains already some
procedures to study hyperplane arrangements.

In the second part of this work we concentrate on the theory of toric arrangements.
These are defined in a way similar to the hyperplane arrangements, except that the
ambient space is an algebraic torus instead of an affine or projective space and the
hyperplanes are replaced by (possibly translated) subtori. Toric arrangements have
been studied since the early 1990s, and over the last two decades several aspects
have been investigated, both from combinatorial and topological points of view. In
particular, as far as the topology of the complement is concerned, De Concini and
Procesi determined the generators of the cohomology modules over C in the divisorial
case, as well as the ring structure in the case of totally unimodular arrangements [14];
d’Antonio and Delucchi provided a presentation of the fundamental group for the
complement of a divisorial complexified arrangement [18]; Callegaro, Delucchi and
Pagaria computed the cohomology ring with integer coefficients [6, 38].



xii Introduction

The problem of studying wonderful models for toric arrangement was first ad-
dressed by Moci in [36], where he described a construction of a non-projective model.
Wonderful models were introduced by De Concini and Procesi in [13, 15], where
they provided both a projective and a non-projective version of their construction. A
wonderful model for the complement of an arrangement M(A) is a smooth variety YA
containing M(A) as an open set and such that YA r M(A) is a divisor with normal
crossings and smooth irreducible components.

In a recent article [12], De Concini and Gaiffi show how to construct a projective
wonderful model for the complement of a toric arrangement A. The key ingredient
in this construction is a toric variety XA with some good properties. This variety is
obtained by subdividing a given fan in a suitable way. De Concini and Gaiffi provide
an algorithm to do so, and we decided to implement it in the SageMath language in
order to produce some meaningful examples.

Basing on the results of [12], in [11] the same authors describe a presentation
of the cohomology ring of the wonderful model YA with integer coefficients; more
precisely, they show that H∗(YA;Z) is isomorphic to a quotient of a polynomial ring
with coefficients in H∗(XA;Z). Starting from their work, we develop an algorithm that
is able to compute the ideal of the relations involved in the presentation of H∗(YA;Z)
as the quotient of a polynomial ring with Z coefficients. Actually, the wonderful
model YA depends on the choice of a building set and our algorithm is able to compute
the minimal one, which is the most desirable case from both the topological and the
computational points of view. Unfortunately, we can’t deal with toric arrangements
in full generality, because we adopt an algorithm ([31]) based on a definition of toric
arrangements that is different from the one we give. We hope to overcome this difficulty
in the near future.

This work is structured as follows. In the first chapter we introduce the definition
of hyperplane arrangements, as well as the basic constructions related to them. We
focus on the idea of combinatorial properties, and we show that the Orlik-Solomon
algebra is combinatorial, while the fundamental group is not.

The second chapter introduces the Milnor fibre, and describes briefly its topology
and combinatorics. The main unanswered question regarding the Milnor fibre is a
combinatoric description of its (co)homology. The study of this (co)homology leads to
the notion of local systems on an arrangement, which we remember here. We recall
also the algebraic complex that is able to compute the (co)homology of the complement
of an arrangement with coefficients in a local system [26, 43].

Characteristic varieties are the main topic of the third chapter. After an introductory
section, we present the classical methods to compute the characteristic variety of an
arrangement. We then recall the definition of the resonance varieties of an arrangement
and explore their connection with the characteristic varieties. Then we proceed to
illustrate what is known in the literature about the combinatorics of resonance and
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characteristic varieties.
Our algorithms allow us to produce more examples of characteristic varieties of

arrangements that have not appeared in the literature, as far as we know. Basing on
those, we elaborated a couple of conjectures which we discovered to be false while
writing this work. Nonetheless we decided to include the reasoning behind them,
hoping that it will be useful in the development of new ideas.

The next two chapters have a more technical nature. The fourth chapter includes
a detailed description of our main algorithms, together with the actual SageMath

code. We decided to show algorithms for the computation of the algebraic complex of
Chapter 2, for the computation of the first characteristic variety (both the classical and
the improved one), and for the analysis of the neighbourly partitions. In addition to
them, we define a class that helps us to manage arrangements which are difficult for a
computer to deal with.

As we mentioned before, the fifth chapter is a catalogue of some projective line
arrangements that we consider noteworthy. Some of them have already appeared in
literature, while others are new. For each of them, we report the list of neighbourly
partitions and the characteristic variety. To make order in the literature (almost each
author uses his/her own nomenclature), we decided to report also the names used in
other works to denote the same arrangement, and pictures of the most common forms
in which it shows up.

The final two chapters are dedicated to the toric arrangements. In the sixth chapter,
we recall the basic definitions regarding toric varieties and toric arrangements and we
show two algorithms that can be used to subdivide a fan in order to get a good toric
variety for an arrangement A: the first is the one outlined in [12], while the other seems
to output better fans, but works only in the 2-dimensional case. We produce some
examples, explaining the behaviour of the two algorithms and underlining similarities
and differences.

The last chapter is focused on the cohomology ring of a projective wonderful model
for the complement of an arrangement. After a brief summary of the definitions
and results that are needed to find the relations of the presentation of H∗(YA;Z), we
delineate the algorithm and present some first examples of cohomology rings computed
by it.
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Chapter 1

Hyperplane Arrangements

In this first chapter we recall the basic definitions and constructions in the theory of
hyperplane arrangements. This both serves as a general introduction to the topic and
allows us to fix some notation.

In particular, the idea of combinatorial properties of an arrangement is defined,
together with two important examples of objects associated with an arrangement, one
which is combinatorial and one which is not.

1.1 Basic Definitions

First of all we introduce our main object of study.

Definition 1.1. Let V be a vector space over a field K. An (affine) hyperplane arrangement
A is a set of affine hyperplanes of V .

Definition 1.2. Let P be a projective space over a field K. A projective hyperplane
arrangement A is a set of projective hyperplanes of P.

Unless otherwise specified, we will assume that all the arrangements are finite, and
all the spaces are finite-dimensional.

Definition 1.3. The dimension dim(A) of a hyperplane arrangement A is the dimension
of the underlying space. For an affine arrangement, the rank rk(A) is the dimension
of the subspace spanned by the normal vectors of the hyperplanes of A. An affine
arrangement A is called essential if dim(A) = rk(A).

An affine hyperplane H Ď V is given by

H = {v ∈ V | α(v) = a}

for some non-degenerate linear form α : V → K and some constant a ∈ K. Notice that,
if (α, a) is a pair that defines an hyperplane H as above, then also (kα, ka) defines the
same hyperplane for every k ∈ K∗.

1



2 Chapter 1. Hyperplane Arrangements

Definition 1.4. Let A be an arrangement in an m-dimensional vector space V and, for
each H ∈ A, let (αH, aH) be a pair that defines H. The polynomial

QA(X) :=
∏
H∈A

(αH(X) − aH) ∈ K[X] = K[X1, . . . , Xm]

is called defining polynomial of the arrangement, and it is defined up to a non-zero
constant.

Remark. The same definition applies to projective arrangements in a projective space P;
in this case a hyperplane is given by

H = {p ∈ P | α(p) = 0}

where α : P → K is a homogeneous polynomial of degree one.

Notation 1.5. If A is an arrangement of the space V , and B Ď A, then

∩B :=
⋂
H∈B

H and ∪B :=
⋃
H∈B

H.

By convention, ∩∅ = V .

Definition 1.6. The complement of a hyperplane arrangement is the set

M(A) := V r (∪A) = V r
⋃
H∈A

H.

Remark. Obviously ∪A = {v ∈ V | QA(v) = 0} and M(A) = {v ∈ V | QA(v) 6= 0}.

The space M(A) is probably the most studied topological object in the theory of
hyperplane arrangements. Its characteristics depend deeply on the field over which
the vector space V is defined. For example, if V = Rm, the topology is trivial: M(A) is
the union of a certain number of connected components, and all of them are convex.
It is interesting in this case to count the components, and quite surprisingly there is a
univariate polynomial (the characteristic polynomial of the arrangement) that encodes
this information, among a lot of other properties. A further analysis of this polynomial
is beyond the scope of this work.

Example 1.1 (Braid arrangement). Consider the vector space Km with coordinates
(v1, . . . , vm) and let Hij Ď Km be the hyperplane

Hij := {v ∈ Km | vi = vj}.

The set
Brm := {Hij | 1 6 i < j 6 m}
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is the braid arrangement of Km. Its cardinality is

#(Brm) =

(
m

2

)
.

The arrangement is not essential, because 〈(1, . . . , 1)〉 Ď Hij for all i and j. By intersect-
ing each hyperplane with any subspace W such that 〈(1, . . . , 1)〉 ⊕W = Km, we obtain
an (m− 1)-dimensional essential arrangement, again called braid arrangement Brm.
The context makes clear if Brm denotes the non-essential m-dimensional arrangement
or this last one.

Definition 1.7. An affine hyperplane arrangement A is central if ∩A 6= ∅. After
a suitable change of coordinates, it can be assumed that 0 ∈ ∩A—in this case the
arrangement is also called linear, and the defining polynomial is homogeneous.

If A is an arrangement of lines in the (affine or projective) plane, we give some
additional definitions.

Definition 1.8. The singular points Sing(A) of a line arrangement A are the intersection
points of the lines of A:

Sing(A) := {` ∩ ` ′ | `, ` ′ ∈ A, ` 6= ` ′}.

If P ∈ Sing(A), its multiplicity m(P) is the number of lines passing through it:

m(P) := #({` ∈ A | P ∈ `}).

Points P with m(P) = 2, 3, 4, . . . are called double, triple, quadruple. . . points.

1.2 Coning and Deconing

Let A be a central arrangement in V = Km. Then a hyperplane H ∈ A defines a
projective hyperplane H Ď P(V). The family of projective hyperplanes

A := {H | H ∈ A} Ď P(V)

is a projective hyperplane arrangement, called projectivization ofA. ObviouslyQA = QA.
On the other hand, let A be an arrangement in P(V); a hyperplane H ∈ A defines a
hyperplane Ĥ Ď V passing through the origin. The family of linear hyperplanes

Â := {Ĥ | H ∈ A} Ď V

is a linear hyperplane arrangement, called deprojectivization of A. Also in this case
QA = QÂ.
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Now let A be an affine (not necessarily linear) arrangement of r hyperplanes in
V = Km, and for each H ∈ A let (αH, aH) be a pair that defines H. The arrangement
of r+ 1 hyperplanes in V ×K = Km+1 given by

{{(v, y) ∈ V ×K | αH(v) = aHy} | H ∈ A} ∪ {{(v, y) ∈ V ×K | y = 0}},

where v are the variables for V and y is the new variable for K, is called coning of A
and denoted by cA. The defining polynomials of A and cA satisfy

QcA(X1, . . . , Xm, Y) = Y
m+1 ·QA(X1/Y, . . . , Xm/Y).

The opposite operation is defined easily. Let A = {H1, . . . , Hr+1} be a linear arrange-
ment of r + 1 hyperplanes in Km+1, and choose coordinates such that Hr+1 = {x ∈
Km+1 | xm+1 = 0}. Identify the hyperplane K := {x ∈ Km+1 | xm+1 = 1} with Km.
The arrangement

{Hi ∩ K | i = 1, . . . , r}

of r hyperplanes in Km is called deconing of A and denoted by dA; its defining
polynomial is

QdA(X1, . . . , Xm) = QA(X1, . . . , Xm, 1).

{
affine arr. of
r hyp. in Km

} {
central arr. of

r+ 1 hyp. in Km+1

} {
projective arr. of

r+ 1 hyp. in Pm(K)

}coning projectivization

deconing deprojectivization

Once we have defined the two pairs of operations “projectivization/deprojectiviza-
tion” and “coning/deconing”, it is easy to see what happens if we combine them. It
turns out that, if A is an affine arrangement of r hyperplanes in Km, cA is the projective
arrangement of r + 1 hyperplanes in Pm(K) obtained by adding the hyperplane at
infinity to A. In particular,

Pm(K)r (∪ cA) = V r (∪A)

where V = Km on the right side is identified with the affine chart {y = 0} in Pm(K) =

P(Km ×K).
Naturally, if we begin with a projective arrangement A of r + 1 hyperplanes in

Pm(K), computing the affine arrangement dÂ corresponds to sending to infinity the
hyperplane chosen for the deconing and looking at A in the relative affine chart. We
still have

V r (∪dÂ) = Pm(K)r (∪A).

Notation 1.9. We will use pA and aA as abbreviations respectively of cA and dÂ.
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1.3 Combinatorial Properties

The combinatorial data associated to a hyperplane arrangement is encoded in the
so-called intersection poset.

Definition 1.10. The intersection poset of an arrangement A is the set

L(A) := {∩B | B Ď A, ∩B 6= ∅}

partially ordered by reverse inclusion. Note that V ∈ L(A), because V = ∩∅.

Remark. If A is central, the poset L(A) is actually a lattice.

`2`3

`1

`4

D

A

B

C

V

`1 `2 `3 `4

A B C D

Figure 1.1: An example of intersection poset of an arrangement of four lines in R2. On
the right it is shown the Hasse diagram of L(A).

Definition 1.11. We say that an object P(A) associated to an arrangement A is combi-
natorial (or combinatorially determined) if it depends only on L(A), that is to say, if for
any two arrangements A1, A2, L(A1) ' L(A2) implies P(A1) ' P(A2). Similarly, a
property p(A) is combinatorial if L(A1) ' L(A2) implies p(A1)⇔ p(A2).

It is not clear what is combinatorial among the many interesting properties of an
arrangement. Moreover, there are meaningful examples of both combinatorial objects
and non-combinatorial ones.

Proposition 1.12. The cohomology ring H∗(M(A);Z) is combinatorial.

Proposition 1.13. The fundamental group π1(M(A)) is not combinatorial.

The cohomology ring will be studied in Section 1.4. We show here a famous
example, due to Rybnikov, of two arrangements which have isomorphic intersection
posets but non-isomorphic fundamental groups.
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Example 1.2 (Rybnikov’s Example [2, 39]). Consider the following lines in P2(C) (with
coordinates [x : y : z]):

`0 = {x = 0}, `1 = {y = 0}, `2 = {x = y}, `3 = {z = 0}, `4 = {x = z},

`+5 = {x+ωy = 0}, `+6 = {z+ωy = (ω+ 1)x}, `+7 = {(ω+ 1)y+ z = x},

`−5 = {x+ωy = 0}, `−6 = {z+ωy = (ω+ 1)x}, `−7 = {(ω+ 1)y+ z = x}

where ω = e2πi/3. Let

Lω = {`0, `1, `2, `3, `4, `
+
5 , `

+
6 , `

+
7 },

Lω = {`0, `1, `2, `3, `4, `
−
5 , `

−
6 , `

−
7 }

and let ρω, ρω : P2(C)→ P2(C) projective transformations such that

• ρω(`i) = `i and ρω(`i) = `i, for i = 0, 1, 2;

• the lines {ρω(`) | ` ∈ Lω} intersect the lines of Lω only in double points outside
`0, `1 and `2;

• the lines {ρω(`) | ` ∈ Lω} intersect the lines of Lω only in double points outside
`0, `1 and `2.

Finally, let§1

Aω := Lω ∪ {ρω(`) | ` ∈ Lω},

Aω := Lω ∪ {ρω(`) | ` ∈ Lω}.

The two arrangements have isomorphic intersection posets (their Hasse diagram is
pictured in Figure 1.2), but the fundamental groups of the complements are not
isomorphic. In fact, Rybnikov [39] explicitly builds an invariant of a group G (that
depends only on the lower central series of G itself) that is able to distinguish between
π1(M(Aω)) and π1(M(Aω)). A more detailed description of this invariant is beyond
the scope of this work.

1.4 The Orlik-Solomon Algebra

In order to prove that the cohomology ring of the complement of an arrangement A is
combinatorial, we show that, using the data of L(A), it is possible to define an algebra
A(A) that is isomorphic (as a graded algebra) to the cohomology ring itself.

Suppose that A is a central arrangement in a vector space V . For each hyperplane
H ∈ A define a symbol eH. If A = {H1, . . . , Hr}, let ei be an abbreviation for eHi .

§1This definition depends on the choice of ρω and ρω. However, it is easy to verify that both the
intersection poset and the fundamental group of Aω do not depend on this choice, nor do the ones of Aω.
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Figure 1.2: Hasse diagram of the (isomorphism class of the) intersection posets of Aω
and Aω.

Let R be a commutative ring with unit and consider the free R-module generated by
{ei | i = 1, . . . , r}:

E1 := 〈ei | i = 1, . . . , r〉.

Let E := ΛE1 be the exterior algebra of E1. Recall that E is graded as

E =

r⊕
p=0

Ep

where E0 = R and Ep is generated over R by all products ei1 ^ · · · ^ eip with
(Hi1 , . . . , Hip) p-tuple of hyperplanes of A. Define a R-linear map ∂ : E → E such
that ∂(1) = 0, ∂(ei) = 1 for all i = 1, . . . , r and, if p > 2,

∂(ei1 ^ · · ·^ eip) =
p∑
k=1

(−1)k−1ei1 ^ · · ·^ êik ^ · · ·^ eip

where êik means that eik is missing from the product.

Notation 1.14. If S = (Hi1 , . . . , Hip) is a p-tuple of hyperplanes, denote

|S| := p, ∩S := Hi1 ∩ · · · ∩Hip , eS := ei1 ^ · · ·^ eip .

Since A is central, ∩S ∈ L(A) for all S. Moreover, for p = 0, S = () and put eS = 1

and ∩S = V . It is clear that codim(∩S) 6 |S|.

Definition 1.15. A p-tuple S is independent if codim(∩S) = |S|, and dependent if
codim(∩S) < |S|.
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Let I Ď E be the ideal generated by {∂(eS) | S is dependent}. I is generated by
homogeneous elements, therefore it is a graded ideal:

I =

r⊕
p=0

Ip

with Ip = Ep ∩ I.

Definition 1.16. The Orlik-Solomon algebra A(A) of an arrangement A is the quotient

A(A) := E
/
I.

Let ϕ : E→ A be the projection. It is not difficult to show that A is graded

A =

r⊕
p=0

Ap

with Ap = ϕ(Ep). Moreover A0 = R and A1 = 〈aH | H ∈ A〉 where aH = ϕ(eH).
If A is not central, the construction differs slightly. The problem is that for a p-tuple

S the intersection ∩S may be empty; the definition of dependent p-tuple becomes the
following.

Definition 1.15*. A p-tuple S is dependent if ∩S 6= ∅ and codim(∩S) < |S|.

The ideal I is now generated by

{eS | ∩S = ∅} ∪ {∂(eS) | S is dependent}

and the Orlik-Solomon algebra is defined as A(A) = E
/
I.

Now that we showed the construction of the Orlik-Solomon algebra of an arrange-
ment A, we may state the main result.

Theorem 1.17 (see also Theorem 5.90 of [37]). Let A be a hyperplane arrangement in a
complex vector space, and choose R = Z. The Orlik-Solomon algebra A(A) and the integer
cohomology ring H∗(M(A);Z) are isomorphic as graded Z-algebras.

The proof of this theorem requires some more effort, so it won’t be reported here.
The important fact is that a topological invariant associated with an arrangement actu-
ally depends on its combinatorics; the next natural question is what other topological
invariants are combinatorial. In the next chapter we will focus our attention on one
particular invariant: the so-called Milnor fibre.



Chapter 2

Milnor Fibre and Local Systems

In this chapter we deal with the Milnor fibre, which is a smooth manifold associated
with a central complex arrangement. One of the main lines of research is to investigate
the topological properties of this object, and try to understand what of them may be
combinatorial. In particular, we focus on the first homology group of the Milnor fibre,
which is isomorphic to the first homology group of the complement of the arrangement
with local coefficients (see Theorem 2.6).

Local systems themselves are described in Section 2.2. The main task is to com-
pute homology with coefficients in a local system, and in Section 2.3 we recall the
construction of an algebraic complex that is able to do so.

2.1 The Milnor Fibre and Its Monodromy

We begin with the definition of the Milnor fibre in a general setting. Let f : U → C

be an analytic function of m complex variables, with U Ď Cm neighbourhood of 0,
and suppose that f(0) = 0. Let Z := {z ∈ U | f(z) = 0}, Sε := {z ∈ Cm | |z| = ε}, and
Kε := Z ∩ Sε. Then the map

ϕ : Sε r Kε −→ S1

z 7−→ f(z)/|f(z)|

is well-defined.

Theorem 2.1 (Fibration [35]). There exists ε0 > 0 such that for every ε 6 ε0 the space
Sε r Kε is a smooth fibre bundle over S1, with projection mapping ϕ.

Therefore each fibre Gθ := ϕ−1(eiθ) is a smooth manifold of (real) dimension
2(m− 1).

Definition 2.2. The Milnor fibre of f is the fibre G0 = ϕ−1(1).

9
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Definition 2.3. Let ht : G0 → Gt a one-parameter family of homeomorphisms, where
t ∈ [0, 2π], such that h0 = Id. The homeomorphism h := h2π is the characteristic
homeomorphism of the Milnor fibre.

Remark. The homeomorphism h depends on the choice of the family ht, but its
homotopy class is uniquely determined.

If f is a polynomial, we may further characterise the Milnor fibre of f.

Proposition 2.4. Let f(z1, . . . , zm) be a homogeneous polynomial of degree k. The Milnor
fibre of f is diffeomorphic to the nonsingular hypersurface

F := {z ∈ Cm | f(z) = 1}

and we may choose as characteristic homeomorphism the map

h : F −→ F

z 7−→ e2πi/kz.

Now we apply this general setting to the case of hyperplane arrangements. Let A
be a central arrangement of n+ 1 hyperplanes in the complex vector space Cm. Recall
that the defining polynomial QA ∈ C[Z1, . . . , Zm] is homogeneous of degree n + 1;
consider it as a map

QA : Cm → C.

Definition 2.5. The restriction

QA M(A)
: M(A)→ C∗

defines a fibration, whose fibre FA := Q−1
A (1) is called Milnor fibre of the arrangement.

The map
h : FA −→ FA

z 7−→ λz

with λ = e2πi/(n+1) is an automorphism of FA, called geometric monodromy of the
Milnor fibre.

There are some open problems regarding the Milnor fibre of an arrangement, for
example it is not known in general whether its Betti numbers are combinatorial (not
even for the first Betti number in the case m = 3).

For our purpose it is sufficient to consider just the first homology group H1(FA;C).
The geometric monodromy induces a linear map

h1 : H1(FA;C)→ H1(FA;C).

The following result is well-known (see also [9]).
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Theorem 2.6. There is a C[T±1]-module isomorphism

H1(FA;C) ' H1(M(A);C[T±1])

under which the monodromy action corresponds to the multiplication by T , i.e. T · [a] = h1([a])
for [a] ∈ H1(FA;C).

The ring C[T±1] is a principal ideal domain, so H1(M(A);C[T±1]) decomposes
into cyclic modules. Moreover, the monodromy action has order that divides n + 1,
therefore the polynomial Tn+1 − 1 annihilates the homology. It follows that there is a
decomposition

H1(M(A);C[T±1]) '
⊕
d|n+1

(
C[T±1]

/
(ϕd)

)bd
(2.1)

where ϕd is the d-th cyclotomic polynomial.

Definition 2.7. The central arrangement A of n+ 1 hyperplanes in Cm is a-monodromic
if

H1(M(A);C[T±1]) ' Cn
[
'
(
C[T±1]

/
(T − 1)

)n]
.

Remark. Since hn+1 = Id, there is a decomposition into eigenspaces

H1(FA;C) =
⊕

ηn+1=1

H1(FA;C)η.

It is clear that, under the isomorphism given by Theorem 2.6, if η is a d-th root of unity

H1(FA;C)η '
(
C[T±1]

/
(ϕd)

)bd
.

An arrangement is a-monodromic if and only if in the decomposition (2.1) we have
b1 = n and bd = 0 for all d 6= 1. Therefore, as the name suggest, a-monodromicity is
equivalent to triviality of the monodromy action.

How does the combinatorics of arrangements relate to Milnor fibres and a-mon-
odromicity? A general answer is not known yet. There are some results, especially for
central arrangements in C3 (i.e. projective line arrangements), see for example [3, 42,
47, 48]. Unfortunately these results lead to other questions, that are still in form of
conjectures. Here we report just one of them, taken from [42].

Definition 2.8. Let A = {H1, . . . , Hn+1} be a central arrangement in C3 and let A =

{H1, . . . , Hn+1} be its projectivization in P2(C). The double points graph Γ(A) is the
graph such that:

• the set of vertices is {H1, . . . , Hn+1};

• there is an edge {Hi, Hj} if and only if Hi∩Hj is a double point (see Definition 1.8).
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Conjecture 2.9 ([42]). Let A be a central arrangement in C3. If Γ(A) is connected, then A is
a-monodromic.

In [42], the authors state that “this conjecture is supported by several ‘experiments’,
since all computations we made confirm it. Also, all non-trivial monodromy examples
we know have disconnected graph Γ”. However, as the number of hyperplanes
increases, the volume of computation grows so much that computers can’t provide
more examples to better understand the situation.

2.2 Local Systems

In the previous section we saw that the homology of the Milnor fibre of an arrangement
A is isomorphic to the homology of the complement M(A) with coefficients in the
Laurent polynomial ring C[T±1], where the monodromy action corresponds to the
multiplication by T . This is actually a particular case of homology with local coefficients,
or with coefficients in a local system. Let us give a definition here.

Definition 2.10. Let A be an affine arrangement of n hyperplanes in the complex vector
space Cm with complement M = M(A) and let R be a commutative ring with unity. A
(rank-1) local system is a structure of π1(M)-module on R.

In other words, a local system is a pair (R, ρ) where R is a commutative ring with
unity and ρ : π1(M)→ Aut(R) is a group homomorphism. It is usual to denote with
Rρ the ring R equipped with this π1(M)-module structure.

Definition 2.11. A local system (R, ρ) is abelian if Im(ρ) 6 Aut(R) is an abelian group.

For an abelian local system (R, ρ) the map ρ : π1(M) → Aut(R) actually factors
through a map ρ̃ : H1(M;Z)→ Aut(R):

π1(M) Aut(R)

H1(M;Z)

ab

ρ

ρ̃

Recall that H1(M;Z) is a free abelian group of rank n generated by geometric loops
β1, . . . , βn around the hyperplanes, so a map ρ̃ is defined once we know the images of
the βi’s.

Remark. Local system can be defined in a more general situation. Let X be a path-
connected space with universal covering X̃ and fundamental group π = π1(X). A local
system for X is a (left) π-module L. Homology with coefficients in L can be defined in
the following way: let Ck(X̃) be the group of (singular) k-chains in X̃; the action of π
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on X̃ induces an action on Ck(X̃), making it a left π-module. Then it is well-defined the
tensor product

Ck(X;L) := Ck(X̃)⊗
π
L.

The map ∂⊗ Id turns the set {Ck(X;L)} into a chain complex, whose homology H∗(X;L)
is by definition the homology of X with coefficients in the local system L. For cohomology,
it is sufficient to consider the sets Ck(X;L) = Homπ(Ck(X̃), L) of π-module homomor-
phisms between Ck(X̃) and L; these groups form a cochain complex, whose cohomology
H∗(X;L) is by definition the cohomology of X with coefficients in the local system L.

We will now come back to our hyperplane arrangements and focus on R = C. In this
case, Aut(C) ' C∗ is an abelian group itself, therefore in order to define a local system it
is sufficient to choose a non-zero complex number ti for every generator βi of H1(M;Z).
This brings to a 1-1 correspondence between rank-1 abelian local systems over C and
the points of the complex torus (C∗)n, where a point t = (t1, . . . , tn) ∈ (C∗)n defines
the local system Ct given by the map

H1(M;Z) −→ C∗

βi 7−→ ti.

Another interesting case is R = C[T±11 , . . . , T±1n ], the multivariate Laurent polyno-
mial ring, with the map

H1(M;Z) −→ Aut(C[T±11 , . . . , T±1n ])

βi 7−→
(
p(T ) 7→ Ti · p(T )

)
.

The last example is R = C[T±1], the univariate Laurent polynomial ring, with the action

H1(M;Z) −→ Aut(C[T±1])
βi 7−→

(
p(T) 7→ T · p(T)

)
.

If A is central, homology with coefficients in this local system is isomorphic to the
homology of the Milnor fibre (see Theorem 2.6).

Remark. The last example allows us to define a-monodromicity for an affine (not
necessarily central) arrangement. In fact, that local system is defined also when A is
not central. Thus we say that by definition an affine arrangement is a-monodromic if

H1(M;C[T±1]) '
(
C[T±1]

/
(T − 1)

)n−1
.

Of course this definition agrees with Definition 2.7 for central arrangements. It is
natural to ask how a-monodromicity behaves with respect to coning and deconing. It
turns out (see [42]) that

• A is a-monodromic⇒ cA is a-monodromic;

• if A is central, A is a-monodromic 6⇒ dA is a-monodromic.
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2.3 An Algebraic Complex

The next step is to compute the homology with local coefficients. In [43], the authors
describe an algebraic complex that is able to compute the local coefficients homology
for the complement of a complexified real arrangement, i.e. an arrangement in the complex
space defined by real equations. More specifically, given a real arrangement A in Rm,
define

AC := {`⊗ C | ` ∈ A} Ď Cm (' Rm ⊗
R
C)

and consider the space M := M(AC) Ď Cm. It is known that M is homotopically
equivalent to an explicit CW-complex S(A), the Salvetti complex ([41]). Moreover, M is
a minimal space, that is to say, it admits a CW structure with as many k-cells as its k-th
Betti number ([21]). The complex described in [43] realizes this structure by refining
the Salvetti complex through the use of discrete Morse theory. When m = 2, i.e. A is an
arrangement of affine lines in the real plane R2, an explicit description of the boundary
operators of this complex is given in [26]. In this section we recall briefly the results
of [43] and [26].

Let A be an arrangement of n affine hyperplanes in Rm and M = M(AC) Ď Cm

be the complement of the complexified arrangement. If x,y ∈ Rm, consider the
equivalence relation x „ y if and only if for all H ∈ A either both x and y belong to H,
or they are strictly on the same side of H. A facet is an equivalence class of this relation
(see also [5]).

Figure 2.1: Example of stratifica-
tion of R2 in facets.

The support of a facet F is the intersection of
all the hyperplanes containing F; the (co)dimension
of a facet is the (co)dimension of its support. A
chamber is a facet of codimension 0. In Figure 2.1,
there are seven facets of codimension 0 (chambers),
nine facets of codimension 1 (segments and rays),
and three facets of codimension 2 (points).

Denote by F the set of all facets; it is a poset
with the partial order

F1 4 F2 if and only if F1 Ě F2

where F1 is the topological closure. The k-cells of
S(A) are in 1-1 correspondence with the set

{(C, F) ∈ F × F | codim(C) = 0, codim(F) = k, C 4 F}.

Moreover, a cell (D,G) appears in the expression of the boundary of a cell (C, F) if and
only if

1. G 4 F;
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2. the chambers C and D are contained in the same chamber in the stratification
induced by AG

where AG is the subarrangement of A given by the hyperplanes containing G.
From now on, in order to simplify the description, we will consider only the

case m = 2. Recall that a system of polar coordinates for R2 is a pair (O, v) where
O is a point and v is a line containing O. If v(θ) is the line obtained by rotating
counter-clockwise the line v around O of an angle θ ∈ [0, 2π), then we say that a point
P ∈ R2 r {O} has coordinates (ρ, θ) ∈ R>0 × [0, 2π) if it belongs to v(θ) and its distance
from O is ρ.

Definition 2.12. Let (O, v) be a system of polar coordinates andA be a line arrangement
in R2. We say that (O, v) is generic with respect to A if:

1. O belongs to a chamber of F;

2. there exists 0 < δ < π/2 such that the union of the bounded facets of F is
contained in the open positive cone

C(0, δ) := {(ρ, θ) ∈ R2 | 0 < θ < δ};

3. the lines v(θ) with 0 6 θ 6 δ are generic with respect to A, i.e. for every ` ∈ A the
intersection ` ∩ v(θ) is a single point that belongs to C(0, δ) (topological closure);

4. each line v(θ) with 0 6 θ 6 δ contains at most one 0-dimensional facet (i.e. a
point) of F.

A generic system of polar coordinates allows us to define a total ordering on the
set of facets F.

Definition 2.13. Let F ∈ F. Denote

θ(F) := inf{η | v(η) ∩ F 6= ∅} ∈ [0, 2π).

The polar ordering is the total ordering on F defined by: F Ÿ G if and only if

1. θ(F) < θ(G);

2. θ(F) = θ(G), F is a point and G is not a point;

3. θ(F) = θ(G), for all ε > 0 the two sets v(θ(F) + ε) ∩ F and v(θ(G) + ε) ∩G are not
empty and there is a point belonging to the first set that is closer to the origin
than all the points of the second set.
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The cells of the minimal complex described in [43] are the cells of the Salvetti
complex S(A) that are critical with respect to a suitable discrete Morse function, and
in the 2-dimensional case there is a characterisation of them in terms of the polar
ordering:

1. the critical 2-cells are the pairs (C, P) such that the point P is the maximal facet
of F contained in C with respect to the polar ordering;

2. the critical 1-cells are the pairs (C, F) such that F ∩ v 6= ∅ and C Ÿ F;

3. the only critical 0-cell is (C0, C0) where C0 is the chamber containing O.

Now, let A be an arrangement of n affine lines in R2 and let (R, ρ) be a local system
for A such that for a generator βi of H1(M;Z) we have ρ(βi) = ti ∈ Aut(R). Denote
with C2, C1 and C0 be the free R-modules generated respectively by the critical 2-, 1-
and 0-cells. Notice that

rk(C0) = 1, rk(C1) = n, rk(C2) =
∑

P∈Sing(A)

(m(P) − 1)

where as usual m(P) is the multiplicity of a singular point P. We have to describe the
boundary operators ∂2 : C2 → C1 and ∂1 : C1 → C0.

Label the lines of A as `1, . . . , `n depending on the order of their intersections with
the reference line v. In other words, if d(P) denotes the distance of the point P ∈ R2

from the origin O, choose labels `1, . . . , `n for the lines of A such that

d(`1 ∩ v) < · · · < d(`n ∩ v).

We have to introduce a little notation; see Figure 2.2 for reference. If P ∈ Sing(A),
denote by S(P) := {` ∈ A | P ∈ `} the set of lines of A passing through P; let `S(P) and
`S(P) be the lines in S(P) with the minimum and the maximum index respectively.
Moreover, let U(P) be the set of the lines of A passing above P and L(P) be the set of
lines passing below P; more precisely, if v(P) is the line passing through O and P,

U(P) = {` ∈ A | d(v(P) ∩ `) > d(P)} and L(P) = {` ∈ A | d(v(P) ∩ `) < d(P)}.

Finally, Cone(P) is the closed cone delimited by `S(P) and `S(P) with vertex P and such
that its intersection with the reference line v is bounded.

For a critical 2-cell (C, P), there are exactly two lines of S(P) that delimit C: denote
with `C and `C the one with minimum and maximum index respectively. Define also

• U(C) := {`i ∈ S(P) | i > index of `C};

• L(C) := {`i ∈ S(P) | i 6 index of `C}.
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1

3

O

v

P

U(P) = {1, 4}

S(P) = {2, 5}

L(P) = {3}
Cone(P)

P
C

`S(P)

`S(P)

`C
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U(C)

L(C)

O

v

Figure 2.2: Notation for the lines with respect to the singular point P and for a critical
2-cell (C, P).

Theorem 2.14. Let (C0, F1), (C1, F2), . . . , (Cn−1, Fn) be the critical 1-cells, where for all
j = 1, . . . , n we have Fj Ď `j. Then, for a critical 2-cell (C, P) and an element h ∈ R, the image
of h(C, P) ∈ C2 under ∂2 is given by

∑
(Cj−1,Fj) s.t.
`j∈S(P)

(( ∏
i<j s.t.
`i∈U(P)

ti

)( ∏
i s.t.

`i∈[C→`j)

ti −
∏
i<j s.t.
`i∈S(P)

ti

))
(h)(Cj−1, Fj) +

+
∑

(Cj−1,Fj) s.t.
`j∈U(P)
FjĎ Cone(P)

(( ∏
i<j s.t.
`i∈U(P)

ti

)(
1−

∏
i<j s.t.
`i∈L(C)

ti

)( ∏
i<j s.t.
`i∈U(C)

ti −
∏
i s.t.

`i∈U(C)

ti

))
(h)(Cj−1, Fj)

(2.2)
where [C→ `j) is the subset of S(P) defined by

[C→ `j) :=

{
{`k ∈ U(C) | k < j} if `j ∈ U(C);
{`k ∈ S(P) | k < j} ∪U(C) if `j ∈ L(C).

Conventionally, an empty product is equal to 1.

Theorem 2.15. Given a critical 1-cell (Ci−1, Fi) and an element h ∈ R, the image of
h(Ci−1, Fi) ∈ C1 under ∂1 is

∂1(h(Ci−1, Fi)) = (1− ti)(h)(C0, C0).

Example 2.1. Consider the “deconed A3 arrangement” aA3 in Figure 2.3. Let us try to
compute the image under ∂2 of the critical 2-cell (C, P) highlighted in blue.
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5

4

3

2

1

P

C

Figure 2.3: Reference figure for Example 2.1.

For the point P we have

S(P) = {`1, `3, `5}, U(P) = {`2}, L(P) = {`4}

and Cone(P) is the light blue region in the figure; for the chamber C we have

U(C) = {`5}, L(C) = {`1, `3}.

From Equation (2.2) we know that the 1-cells with a non-zero coefficient in ∂2(C, P) are
the ones in S(P), which are lines 1, 3 and 5, and the ones in Cone(P) that pass above
P—in this case all the lines belong to Cone(P), but only line 2 passes above.

• Coefficient for line 1 (j = 1 in Equation (2.2)): in this case [C→ `1) = {`5} and

– {i | i < 1, `i ∈ U(P)} = ∅ because there are no indices below 1;

– {i | `i ∈ [C→ `1)} = {5};

– {i | i < 1, `i ∈ S(P)} = ∅ because there are no indices below 1;

therefore the coefficient is (t5 − 1).

• Coefficient for line 2 (j = 2):

– {i | i < 2, `i ∈ U(P)} = ∅ because the only line in U(P) is `2 (notice that the
inequality is strict);

– {i | i < 2, `i ∈ L(C)} = {1};

– {i | i < 2, `i ∈ U(C)} = ∅;

– {i | `i ∈ U(C)} = {5};
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therefore the coefficient is (1− t1)(1− t5).

• Coefficient for line 3 (j = 3): in this case [C→ `3) = {`1, `5} and

– {i | i < 3, `i ∈ U(P)} = {2};

– {i | `i ∈ [C→ `3)} = {1, 5};

– {i | i < 3, `i ∈ S(P)} = {1};

therefore the coefficient is t2(t1t5 − t1).

• Coefficient for line 5 (j = 5): in this case [C→ `5) = ∅ and

– {i | i < 5, `i ∈ U(P)} = {2};

– {i | `i ∈ [C→ `5)} = ∅;

– {i | i < 5, `i ∈ S(P)} = {1, 3};

therefore the coefficient is t2(1− t1t3).

Putting all together we have

∂2(C, P) = (t5 − 1)(C0, F1) + (1− t1)(1− t5)(C1, F2) +

+ t2(t1t5 − t1)(C2, F3) + t2(1− t1t3)(C4, F5).

If we consider C2 ' R6 and C1 ' R5, we can put all the coefficients in a 5 × 6 matrix
with coefficients in Aut(R) that represents the boundary operator as a map ∂2 : R6 → R5.
After a little computation, it turns out that this matrix is

0 t3t5 − 1 t5 − 1 0 0 t4 − 1

t5 − 1 (t1 − 1)(t3t5 − 1) (t1 − 1)(t5 − 1) t3t4 − 1 t4 − 1 (t1 − 1)(t4 − 1)

0 t2(1− t1) t1t2(t5 − 1) 1− t2 t2(t4 − 1) t2(t1 − 1)(t4 − 1)

0 0 0 t3(1− t2) 1− t2t3 t2t3(1− t1)

1− t2 t2t3(1− t1) t2(1− t1t3) 0 0 0


.

Remark. The ti’s in the above matrix can be interpreted, for example, as indeterminates
of a Laurent polynomial ring C[t±11 , . . . , t±1n ] or as non-zero complex numbers. More-
over, by evaluating ti = T for all i, we can compute the homology H∗(M;C[T±1]) with
the action given by T -multiplication, and therefore the homology of the Milnor fibre.
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Chapter 3

Characteristic Varieties

We have seen in Section 2.2 that a point t ∈ (C∗)n defines a rank-1 local system Ct

for a complex affine arrangement A of n lines. The next step is to study how the
cohomology Hi(M(A);Ct) varies depending on t. This leads to the definition of the
characteristic varieties of an arrangement A.

Characteristic varieties have been studied deeply from an algebraic-geometric point
of view. Less is known about the combinatorics of them. Also, the question about
whether the characteristic varieties are combinatorial in the sense of Definition 1.11 is
still unanswered in full. In this chapter we recall the state of the art and we propose
that an old combinatorial description of the “homogeneous components” may have, in
fact, something else to tell.

3.1 The Definition

The definition of the characteristic varieties is actually very simple.

Definition 3.1. Let A be an affine arrangement of n hyperplanes in Cm. For t =

(t1, . . . , tn) ∈ (C∗)n, let Ct be the rank-1 local system associated with t. The set

Vik(A) := {t ∈ (C∗)n | dimC Hi(M(A);Ct) > k}

is called characteristic variety of A of degree i and depth k. When i = 1, we write just
Vk(A) := V1k(A); when also k = 1, we denote V(A) := V1(A).

The characteristic varieties Vik(A) are closed algebraic subsets of (C∗)n (see for
example [19, Proposition 6.1]). Actually, for i = 1 we can be more precise about the
irreducible components of Vk(A).

Theorem 3.2 (Arapura [1]). Vk(A) is a finite union of (possibly translated) subtori of the
complex torus (C∗)n.

21
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Notation 3.3. The union of the components passing through 1 = (1, . . . , 1) ∈ (C∗)n is
the “homogeneous part” of the characteristic variety Vk(A) and will be denoted by
V̌k(A).

3.2 Computing Characteristic Varieties

Given a finite presentation of π1(M(A)), it is possible to compute the characteristic
variety V(A) using Fox calculus.

Definition 3.4. Let G be a group. The group ring associated with G (with coefficients in
C) is the set CG of all finite C-linear combinations of elements of G, equipped with the
ring structure given by(∑

g∈G
mgg

)
+
(∑
g∈G

ngg
)
=
∑
g∈G

(mg + ng)g,(∑
g∈G

mgg
)
·
(∑
h∈G

nhh
)
=
∑
g,h∈G

(mgnh)(gh).

Suppose that G is finitely generated by g1, . . . , gn. For i = 1, . . . , n define the Fox
derivative ∂/∂gi as the C-linear map

∂

∂gi
: CG→ CG

such that
∂

∂gi
(1) = 0,

∂

∂gi
(gj) =

{
1 if i = j

0 otherwise,

and for all g, h ∈ G
∂

∂gi
(gh) =

∂

∂gi
(g) + g

∂

∂gi
(h).

Now, let G = 〈g1, . . . , gn | r1, . . . , rh〉 be a presentation of G. The Fox Jacobian of G is
the matrix JG ∈Mh×n(CG) defined as

(JG)i,j =
∂

∂gj
(ri).

Suppose that ri ∈ [G,G] for all i = 1, . . . , h (that is the case if G = π1(M(A))). The
abelianization G

/
[G,G] is isomorphic to Zn and the abelianization map ab : G → Zn

extends to a map
ab : CG→ CZn ' C[T±11 , . . . , T±1n ]

where ab(gi) = Ti.
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Definition 3.5. The Alexander matrix of the group G is the abelianization of the Fox
Jacobian of G, i.e. it is the matrix AG ∈ Mh×n

(
C[T±11 , . . . , T±1n ]

)
such that (AG)i,j =

ab((JG)i,j).

Theorem 3.6 (see [45] for references). Let G = π1(M(A)) and, for t ∈ (C∗)n, let AG(t) ∈
Mh×n(C) be the Alexander matrix of G evaluated at t. Then

Vk(A) = {t ∈ (C∗)n | rk(AG(t)) < n− k}.

Despite all this machinery, we will not use the Alexander matrix to compute
the characteristic varieties. In fact, for real affine line arrangements, the transposed
of the algebraic complex introduced in Section 2.3 allows us to compute directly
H1(M(AC);Ct). It follows easily that, if [∂2](t) is the matrix of the second boundary of
that complex,

Vk(AC) = {t ∈ (C∗)n | rk([∂2](t)) < n− k}.

This characterisation leads to a first, easy result about what happens if we add a line to
an arrangement.

Proposition 3.7. Let A = {`1, . . . , `n} be an arrangement of lines in R2 and let A ′ =
A ∪ {`n+1}. Let V(A) Ď (C∗)n and V(A ′) Ď (C∗)n+1 be the characteristic varieties of (the
complexifications of) A and A ′ respectively.

1. If (t1, . . . , tn) ∈ V(A), then (t1, . . . , tn, 1) ∈ V(A ′).

2. Let P Ď Sing(A ′) be the set of points that belong to `n+1 and suppose that there exists
P ∈ P, P = `i1 ∩ · · · ∩ `ir ∩ `n+1 such that ti1 · · · tir 6= 1. If (t1, . . . , tn, 1) ∈ V(A ′),
then (t1, . . . , tn) ∈ V(A).

Proof. Without loss of generality, we can suppose that `n+1 is the last line of A ′ with
respect to the polar ordering. We compute ∂2 of A and A ′ using the Formula (2.2).

`n+1

`ir

...

`i1

P

Figure 3.1: The shaded 2-cell is the last one of a singular point P ∈ P, i.e. belonging to
`n+1.

Notice that there is a bijective correspondence between the critical 2-cells of A
and the critical 2-cells of A ′ which are not of the form highlighted in Figure 3.1. In
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particular, the coefficients given by Formula (2.2) for these cells relatively to the lines
`1, . . . , `n computed for A and A ′ are the same except possibly for some tn+1 factors,
and become exactly the same if we evaluate tn+1 = 1.

On the other hand, the same formula computes the coefficients of a critical 2-cell
of A ′ of the form given in Figure 3.1. It turns out that these coefficients relatively
to `1, . . . , `n either are 0 or have a factor 1 − tn+1, so they are all equal to 0 when
tn+1 = 1.

In conclusion, let D ′ := [∂2(A ′)](t1, . . . , tn, 1) and D := [∂2(A)](t1, . . . , tn). Up to
moving the columns relative to the 2-cells of the form of Figure 3.1 at the end, we have

D ′ =


D 0 · · · 0

(∗∗) (∗)

.
The coefficients in the part (∗) of the matrix can also be computed: if P ∈ P is the
singular point corresponding to the 2-cell, the relative coefficient is ∏

`i∈U(P)

ti

 ·(1−∏
i∈P

ti

)
.

1. Suppose that (t1, . . . , tn) ∈ V(A), i.e. all (n− 1)× (n− 1) minors of D vanish. We
want to prove that all n× n minors of D ′ also vanish. To do so, we analyse all
the possible choices of such a minor.

• If we choose the first n rows of D ′,

– if we choose n columns of D then the minor is zero because rk(D) 6
n− 1;

– if we choose at least one column of zeros, the minor is trivially zero.

• if we choose the last row and n − 1 among the others, we use Laplace
expansion on the last row to obtain a sum of (n− 1)× (n− 1) minors (with
some coefficients) that involve the first n rows; we now prove that all these
smaller minors are 0.

– If the n− 1 columns are chosen among the ones of D, the minor is zero
because (t1, . . . , tn) ∈ V(A);

– if we choose at least one column of zeros, the minor is trivially zero.

Therefore all the n× n minors of D ′ are zero, and (t1, . . . , tn, 1) ∈ V(A ′).

2. Suppose now that (t1, . . . , tn, 1) ∈ V(A ′), i.e. all the n× n minors of D ′ vanish.
Choose an (n− 1)× (n− 1) minor M of D, and complete it with the last row of
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D and the column corresponding to a P ∈ P, P = `i1 ∩ · · · ∩ `ir ∩ `n+1, such that
ti1 · · · tir 6= 1 (it exists by hypothesis). The resulting n× n minor of D ′ is

M ·

 ∏
`i∈U(P)

ti

 ·
1− r∏

j=1

tij


and it is equal to 0. Now,

•
∏

`i∈U(P)

ti 6= 0 because they are invertible elements;

• ti1 · · · tir 6= 1;

we can conclude that M = 0.

Remark. The implication (t1, . . . , tn, 1) ∈ V(A ′) ⇒ (t1, . . . , tn) ∈ V(A) is false in gen-
eral, without adding further hypotheses. For example, consider the two arrangements
in Figure 3.2.

A ′ : `3

`5

`4

`1

`2

A : `3

`4

`1

`2

Figure 3.2

• V(A ′) = V ′1 ∪ · · · ∪ V ′5 where:

V ′1 = {t ∈ (C∗)5 | t3 = 1, t4 = 1, t5 = 1},

V ′2 = {t ∈ (C∗)5 | t4 = 1, t2 = 1, t1t3t5 = 1},

V ′3 = {t ∈ (C∗)5 | t2 = t5, t1 = t4, t3t4t5 = 1},

V ′4 = {t ∈ (C∗)5 | t5 = 1, t1 = 1, t2t3t4 = 1},

V ′5 = {t ∈ (C∗)5 | t1 = 1, t2 = 1, t3 = 1};

• V(A) = V1 ∪ V2 where:

V1 = {t ∈ (C∗)4 | t3 = 1, t4 = 1},

V2 = {t ∈ (C∗)4 | t1 = 1, t2t3t4 = 1}.
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Now, the point (1, 1, 1, a, 1) belongs to V ′5 for every a ∈ C∗, but if a 6= 1 the point
(1, 1, 1, a) does not belong to V(A). Notice that P = {`1 ∩ `3 ∩ `5, `2 ∩ `5} and for the
point (1, 1, 1, a, 1) we have both t2 = 1 and t1t3 = 1.

3.3 Resonance Varieties

It is known that the homogeneous part V̌k(A) of the characteristic variety is combina-
torial: it can be derived by the so-called resonance variety. Let A be an arrangement
of n affine hyperplanes in Cm and let A = A(A) be the Orlik-Solomon algebra of A.
Recall that A is a graded algebra A =

⊕
Ai and it is combinatorial. Let a ∈ A1 and

consider the map “multiplication by a”

δa : A −→ A

b 7−→ a^ b.

Since δa(Ai) Ď Ai+1 and a ^ a = 0, (A•, δa) is a cochain complex, called Aomoto
complex.

Definition 3.8. The set

Rik(A) := {a ∈ A1 | dimC Hi((A•, δa);C) > k}

is called resonance variety of A of degree i and depth k. When i = 1, we write just
Rk(A) := R1k(A); when also k = 1, we denote R(A) := R1(A).

The relation between characteristic varieties and resonance varieties is established
by the following theorem.

Theorem 3.9 (Tangent Cone [8]). The resonance variety Rk(A) is the tangent cone of the
characteristic variety Vk(A) at the point 1 = (1, . . . , 1). In particular, the exponential map

exp : A1[ ' Cn] −→ (C∗)n

(z1, . . . , zn) 7−→ (e2πiz1 , . . . , e2πizn)

defines a 1-1 correspondence between the set of irreducible components of Rk(A) and the set of
irreducible components of Vk(A) passing through 1.

Resonance varieties have been extensively studied by several authors. Here we
recall some of their properties.

Proposition 3.10 ([23]). If A is central, then R1(A) is contained in the subspace{
(z1, . . . , zn) ∈ Cn

∣∣∣∣∣
n∑
i=1

zi = 0

}
.
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Proposition 3.11 ([8]). The irreducible components of R1(A) are linear subspaces of Cn.

Proposition 3.12 ([34]). Let C be the set of irreducible components of R1(A).

1. For all C ∈ C, dimC > 2.

2. For all C1, C2 ∈ C, if C1 6= C2 then C1 ∩ C2 = {0}.

3. Let Ck := {C ∈ C | dimC > k+ 1}. Then for all k

Rk(A) = {0} ∪
⋃
C∈Ck

C.

Proposition 3.13 ([19, Corollary 6.2]). The irreducible components of R1(A) are precisely
the maximal isotropic subspaces C Ď A1

[
' H1(M(A);C)

]
with respect to the cup product

∪ : H1(M(A);C)×H1(M(A);C)→ H2(M(A);C)

and such that dimC > 2.

3.4 The Setting

From now on, A will be a projective line arrangement of n + 1 lines in P2(R). Notice
that we have not defined local systems for projective arrangements. However, it is
known that, if β1, . . . , βn+1 are the generators of H1(M(AC);Z) (i.e. geometric loops
around the projective lines), then

H1(M(AC);Z) = 〈β1, . . . , βn+1 | β1 · · ·βn+1 = 1, [βi, βj] = 1 for all i, j〉

where [βi, βj] is the commutator. It follows that, if Ct is a local system for aA (where
`n+1 is the line sent to infinity) defined by t = (t1, . . . , tn), then (t1, . . . , tn+1) defines
a local system for A if we set tn+1 = (t1 · · · tn)−1.

On the other hand, for a central arrangement of n+ 1 hyperplanes in Cm we have
(see for example [8])

M(A) = M(dA)× C∗,

thus π1(M(A)) = π1(M(dA))× Z where the generator of the factor Z can be taken as
the product β1 · · ·βn+1 where the βi are geometric loops around the hyperplanes of
A. It follows that

Vk(A) = {(t1, . . . , tn+1) ∈ (C∗)n+1 | (t1, . . . , tn) ∈ Vk(dA), t1 · · · tn+1 = 1}. (3.1)

As a consequence, we define the characteristic variety V(A) for a projective line
arrangement in P2(R) as the characteristic variety of the complexified deprojectivization
of A:

V(A) := V(ÂC).

In particular we can restate the result (3.1).
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Theorem 3.14. Let A = {`1, . . . , `n+1} be a projective line arrangement of n + 1 lines in
P2(R) and let aA be any arrangement of n lines in R2 obtained by sending to infinity one of
the lines of A (suppose, without loss of generality, `n+1). Then

V(A) = {(t1, . . . , tn+1) ∈ (C∗)n+1 | (t1, . . . , tn) ∈ V((aA)C), t1 · · · tn+1 = 1}.

Remark. From now on, we will drop the notation V(AC) and we will use simply V(A)
to denote the characteristic variety of A. If A is a real arrangement, V(A) will always
denote the characteristic variety of the complexified arrangement. Similarly R(A) will
be the resonance variety of AC if A is real.

Notation 3.15. If A = {`1, . . . , `n+1} is a projective line arrangement, we define L2(A) as
the set of its singular points, where a point P ∈ Sing(A) is identified with the set of
indices of the lines passing through it. Formally,

L2(A) := {{i | P ∈ `i} | P ∈ Sing(A)}.

Abusing notation, we will use the same symbol P to denote a singular point in Sing(A)
and the corresponding set of indices in L2(A). In a similar way we will sometimes
write #(P) instead of m(P).

3.5 Combinatorics of the Resonance Variety

We know that the resonance variety R(A) is combinatorially determined, because
it is defined in terms of the Orlik-Solomon algebra, but we would like to have a
simpler combinatorial description of its irreducible components. Falk [23] offers such a
description.

Proposition 3.16 ([23, Lemma 3.14]). Let P ∈ L2(A) with #(P) > 3. Then

C(P) :=

z ∈ Cn+1
∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
j/∈P

{z ∈ Cn+1 | zj = 0} (3.2)

is an irreducible component of R(A) of dimension #(P) − 1.

Definition 3.17. A component of R(A) of the form C(P) for some P ∈ L2(A) with
#(P) > 3 is called local component.

The non-local components admit a description in terms of the so-called neighbourly
partitions.

Definition 3.18 ([23]). Let A be an arrangement of n + 1 lines in P2(R). A partition
π = {π1, . . . , πk} of [n+ 1] is neighbourly if, for all P ∈ L2(A) and for all i = 1, . . . , k,

#(πi ∩ P) > #(P) − 1 ⇒ P Ď πi. (3.3)
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The partition with only one block {{1, . . . , n + 1}} is always neighbourly, and it is the
trivial neighbourly partition. In the following, all neighbourly partitions are implicitly
assumed to be non-trivial.

Remark. Notice that if π is a neighbourly partition, the two lines passing through any
double point of A must belong to the same block of π. It follows that any neighbourly
partition is a superpartition of the double points partition.

Definition 3.19. Let A be an (affine or projective) arrangement. The double points
partition of A is the partition induced by the connected components of the double
points graph Γ(A) (see Definition 2.8).

Remark. The double points partition is not necessarily neighbourly.

If π is a neighbourly partition, define C(π) Ď Cn+1 as

C(π) :=

z ∈ Cn+1
∣∣∣∣∣∣
n+1∑
j=1

zj = 0

 ∩ ⋂
P∈P

z ∈ Cn+1
∣∣∣∣∣∣
∑
j∈P

zj = 0

 (3.4)

where P := {P ∈ L2(A) | @ πh ∈ π s.t. P Ď πh}.

Proposition 3.20 ([34]). If dim(C(π)) > 2, then C(π) is a non-local component of R(A).

Definition 3.21. If π is a partition of a subset B Ď [n+ 1], define support of π, supp(π),
the set B. A partition is called essential if supp(π) = [n+ 1].

Proposition 3.22 (See also [34]). Let B Ď A be a subarrangement and let π be a neighbourly
partition for B such that dim(C(π)) > 2. Then

C(π) ∩
⋂

j/∈supp(π)

{zj = 0}

is a non-local component of R(A). All non-local components of R(A) arise from subarrange-
ments of A this way.

Remark. In fact, even local components arise from neighbourly partitions: for P ∈ L2(A),
if BP := {` ∈ A | P ∈ `} is the central arrangement defined by the lines passing through
P, then πP := {{i} | i ∈ P} is neighbourly for BP, and C(P) = C(πP).

Definition 3.23. A neighbourly partition of a subarrangement B Ď A is non-local is B
is not of the form BP for some P ∈ Sing(A).

A more refined combinatorial structure that describes the components of R(A) is
the multinet, defined by Falk and Yuzvinsky in [24].

Definition 3.24. A multi-arrangement is a pair (A, µ) where A is a line arrangement and
µ : A → Nr {0} is a multiplicity function.
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Definition 3.25 ([24]). A weak (k, d)-multinet on a multi-arrangement (A, µ) is a pair
(N,X), where N = {A1, . . . ,Ak} is a partition of A in k > 3 classes and X Ď Sing(A)
such that

1. the value d =
∑
`∈Ai

µ(`) does not depend on i;

2. for every ` ∈ Ai and ` ′ ∈ Aj with i 6= j, the point ` ∩ ` ′ is in X;

3. for each P ∈ X, the value nP =
∑

`∈Ai, P∈`
µ(`) does not depend on i.

A (k, d)-multinet is a weak (k, d)-multinet satisfying the additional property:

4. for every Ai, for every `, ` ′ ∈ Ai there is a sequence of lines ` = `0, `1, . . . , `r = ` ′

such that `j−1 ∩ `j /∈ X for all j = 1, . . . , r.

Remark. • If (N,X) is a weak multinet, then X is determined by N, namely

X = {` ∩ ` ′ | ` ∈ Ai, ` ′ ∈ Aj, i 6= j}.

• If (N,X) is a multinet, then N is determined by X as well: build a graph G with
vertex set A and edges {`, ` ′} if and only if ` ∩ ` ′ /∈ X. Then N is the partition
induced by the connected components of G.

• If nP = 1 for all P ∈ X, then condition 4. follows from 3. In this case (N,X) is
called a net. If (N,X) is a net, µ(`) = 1 for all ` ∈ A; the converse is false, that is
to say, there are multinets with µ(`) = 1 for all ` ∈ A that are not nets.

• If (N,X) is a weak multinet, N is neighbourly.

Theorem 3.26 ([24]). Suppose that A supports a weak (k, d)-multinet. Then there is a
(k− 1)-dimensional irreducible component in R(A).

Theorem 3.27 ([24]). Suppose that R(A) contains a (k−1)-dimensional irreducible component
which is not contained in any coordinate hyperplane (i.e. hyperplanes of the form {zj = 0}).
Then A supports a (k, d)-multinet for some d.

3.6 Combinatorics of the Characteristic Variety

The Tangent Cone Theorem establishes a correspondence between the components
of the resonance variety and the ones of the characteristic variety passing through 1.
Therefore we can translate the results of Section 3.5 in the context of characteristic
varieties.

We begin with some classification of the irreducible components of V(A), induced
by Definition 3.17.
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Definition 3.28. A local component of V(A) is a component that corresponds to a local
component of R(A).

In particular, for each P ∈ L2(A) with #(P) > 3 we have a local component in the
characteristic variety. Among the non-local components we make a further distinction.

Definition 3.29. A component of V(A) is global if it is not contained in any coordinate
hypertorus of (C∗)n+1, i.e. any hypertorus defined by {ti = 1}. Notice that a global
component is always non-local (unless A is trivial), but there may exist components
that are neither local nor global.

For i = 1, . . . , n+ 1 let Ai := Ar {`i} and let M, Mi be the complements of AC and
(Ai)C respectively. The inclusion ιi : M ↪→Mi induces a map of local systems

(ιi)
∗ : (C∗)n −→ (C∗)n+1

(t1, . . . , ti−1, ti+1, . . . , tn+1) 7−→ (t1, . . . , ti−1, 1, ti+1, . . . , tn+1).
(3.5)

Proposition 3.30 (Corollary of Proposition 3.7(1)). If t ∈ V(Ai), then (ιi)
∗(t) ∈ V(A). In

particular (ιi)∗ restricts to an injective map

(ιi)
∗
V(Ai)

: V(Ai)→ V(A).

Corollary 3.31. Let B Ď A be a subarrangement and let (ιB)∗ : V(B)→ V(A) be the obvious
generalization of (3.5). If W is a component of V̌(B), then (ιB)

∗(W) is a component of V̌(A).

Proof. By Proposition 3.30, (ιB)∗(W) Ď V(A)—more precisely (ιB)
∗(W) Ď V̌(A). The

only problem that may arise is that (ιB)∗(W) ĎW ′ for another component W ′ ∈ V̌(A).
This is impossible by Proposition 3.12(2).

Definition 3.32. A component W of V(A) is essential if it is not of the form (ιi)
∗(Wi)

for some component Wi of V(Ai).

Proposition 3.33. A global component is essential.

Proof. Let W be a global component, and suppose that W = (ιi)
∗(Wi) for some i. This

would imply W Ď {ti = 1}, against the hypothesis.

Theorem 3.34 ([33, Lemma 1.4.3]). A (strictly) positive-dimensional essential component is
global.

The previous result applies to all the homogeneous components of V̌(A), since their
dimension is at least two (see Proposition 3.12(1)). As mentioned in the statement
of Theorem 3.2, it is possible that an irreducible component of V(A) does not pass
through the origin.

Definition 3.35. A component W of V(A) is translated if (1, . . . , 1) /∈W.
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Notice that all the components of the resonance variety are non-translated (Proposi-
tion 3.11), and translated components appear in characteristic varieties (see Chapter 5).
Strangely enough, all known translated components are either 0- or 1-dimensional.
Theorem 3.34 does not rule out the possibility of existence of a zero-dimensional
translated essential component which is non-global, however no examples of this kind
have been found.

Remark. For translated components, Corollary 3.31 does not hold. In fact, let W be a
translated component of V(B) for a subarrangement B Ď A. Then, either (ιB)∗(W) is a
(translated) component of V(A) or (ιB)∗(W) ĎW ′ for some componentW ′ Ď V(A). For
example (see Chapter 5 for reference), the B3 arrangement contains 3 subarrangements
of type B3x, but none of their translated components is “expressed” in the characteristic
variety of B3: all these components are actually included in the 2-dimensional essential
(non-translated) component of B3.

For homogeneous components, we can derive equations from singular points and
neighbourly partitions by exponentiating Formulae (3.2) and (3.4) respectively. In
particular, we define ideals I Ď C[T±11 , . . . , T±1n+1] such that their varieties Z(I) Ď (C∗)n+1

are the components of V(A).

• If P ∈ L2(A) with #(P) > 3, define

I(P) :=

n+1∏
j=1

Tj − 1

+
(
Tj − 1

∣∣ j /∈ P); (3.6)

this corresponds to a local component of V(A).

• If π = {π1, . . . , πk} is a neighbourly partition, define

I(π) :=

n+1∏
j=1

Tj − 1

+

∏
j∈P

Tj − 1

∣∣∣∣∣∣ P ∈ P

 (3.7)

where P := {P ∈ L2(A) | @ πh ∈ π s.t. P Ď πh}.

We can now restate Propositions 3.20 and 3.22 in the context of characteristic varieties.

Proposition 3.36. Let W be the irreducible component of Z(I(π)) passing through (1, . . . , 1).
If dim(W) > 2, then W is a non-local component of V(A).

Proposition 3.37. Let B Ď A be a subarrangement and let π be a neighbourly partition for B
such that dim(W) > 2, where W is the component of I(π) passing through (1, . . . , 1). Then
the component passing through (1, . . . , 1) of the variety in (C∗)n+1 defined by the ideal

I(π) + (Tj − 1 | j /∈ supp(π))

is a non-local component of V(A). All non-local components of V(A) passing through (1, . . . , 1)

arise from subarrangements of A this way.
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3.7 Experiments

We used the algorithms of Sections 4.2 and 4.3 to compute characteristic varieties
of several arrangements. Most of them are taken from the catalogue of simplicial
arrangements of Grünbaum ([28]).

Definition 3.38. An arrangement of lines in P2(R) is simplicial if the connected compo-
nents of M(A) Ď P2(R) are simplices (i.e. triangles).

We used the result to compile our small catalogue of remarkable arrangements
(Chapter 5). In this section we follow the nomenclature of arrangements from that
chapter.

1

2

3

4

5 6

Figure 3.3: The A3 arrangement.

Let us begin with a warm-up example: the A3 arrangement. Refer to Figure 3.3 for
the names of the lines. Just for this arrangement, we will explain the combinatorics of
the characteristic variety with all details.

A3 has seven singular points, three double ones:

{1, 4}, {2, 5}, {3, 6}

and four triple ones:

{1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {4, 5, 6}.

These four points give four local components

{t ∈ (C∗)6 | t1t2t6 = 1, t3 = 1, t4 = 1, t5 = 1},

{t ∈ (C∗)6 | t1t3t5 = 1, t2 = 1, t4 = 1, t6 = 1},

{t ∈ (C∗)6 | t2t3t4 = 1, t1 = 1, t5 = 1, t6 = 1},

{t ∈ (C∗)6 | t4t5t6 = 1, t1 = 1, t2 = 1, t3 = 1}.

The only non-local neighbourly partition is essential, and it is the double points
partition π = {{1, 4}, {2, 5}, {3, 6}}. In this case

I(π) = (T1T2T6 − 1, T1T3T5 − 1, T2T3T4 − 1, T4T5T6 − 1, T1T2T3T4T5T6 − 1)
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is 2-dimensional and gives a global component

{t ∈ (C∗)6 | t4t5t6 = 1, t1 = t4, t2 = t5, t3 = t6}.

5

6

4

3

1

27

Figure 3.4: The NonFano arrangement. Line 7 is at infinity.

The next arrangement that we show is the NonFano arrangement. It has six singular
points, all triple:

{1, 2, 7}, {1, 3, 6}, {2, 3, 5}, {2, 4, 6}, {3, 4, 7}, {5, 6, 7},

and three subarrangements of type A3. The characteristic variety has nine components,
corresponding to these data. However, there is one more essential neighbourly partition:

π = {{1, 4, 5}, {2}, {3}, {6}, {7}}

(which is, indeed, the double points partition). Now, I(π) is 0-dimensional, so it does
not contribute to the characteristic variety. But look at the second characteristic variety
V2(NonFano) (first computed in [8]):

V2(NonFano) = {(1, 1, 1, 1, 1, 1, 1), (1,−1,−1, 1, 1,−1,−1)}.

There is a translated 0-dimensional component in V2(NonFano), and the distribution
of the 1’s and −1’s is suspicious—it mirrors the blocks of the partition π.

The last example that we recall from literature is that of B3x. Its characteristic variety
has been computed in [46] and presents one 1-dimensional translated component. This
arrangement does not have any essential (non-trivial) neighbourly partition: to show
this, begin with the double points partition

{{1, 4, 5}, {2, 3, 7}, {6}, {8}}

and notice that it is not neighbourly, because for example the singular point {2, 3, 5}
does not respect the neighbourly condition (3.3). Since 2 and 3 are in the same block, 5
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4 7 1

3

5

2

8

6

Figure 3.5: The B3x arrangement.

has to be as well, therefore {1, 2, 3, 4, 5, 7} must be a block in the partition. Now notice
that lines 6 and 8 must belong to this block too (look at the singular points {2, 4, 6}

and {1, 2, 8}) and conclude that the only essential neighbourly partition is the trivial
one. It seems that in this case neighbourly partitions do not encode information of the
translated component.

One of the problems of studying the translated components of characteristic varieties
is the lack of examples. These components seem to appear in arrangements whose
characteristic varieties are on the edge of computability. Cohen [7] has defined a class
of complex arrangements Dr (r > 2) with 3r+ 2 lines, such that V(Dr) has r− 1 essential
1-dimensional translated components. Unfortunately we are not able to compute
explicitly V(Dr) (unless r = 2, since D2 is actually B3x) because our algorithms can
only deal with real arrangement. We’ll return on this example.

Definition 3.39. Let n > 2 be an integer. The square arrangement Q(n) is the arrange-
ment of 2n+ 2 lines in P2(R) defined as follows: take n vertical lines and n horizontal
lines, arrange them in a grid of (n− 1)× (n− 1) squares, and add the two diagonals.

Figure 3.6: Arrangements Q(2), Q(3), Q(4) and Q(5).

Notice that Q(2) and A3 are the same arrangement, and so are Q(3) and B3x. Our
computation shows that V(Q(4)) has one essential 1-dimensional translated component
(see Chapter 5 for details).

While searching for interesting arrangements, we came across Grünbaum’s cata-
logue [28] and we decided to focus at first on regular arrangements.
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Definition 3.40 ([29]). Let m > 3 be an integer. The regular arrangement R(2m) is the
arrangement of 2m lines in P2(R) defined as follows: take the m sides of a regular
m-agon, together with the m axes of symmetry.

So, for example, R(6) is the same of A3, and R(8) is another name for B3x. The
next one is R(10), and it seems that no one computed its characteristic variety. We
took the challenge and used the algorithm variety_from_matrix (Section 4.2). It took
more or less two weeks to finish, on a computer with an AMD A8-3850 APU @ 2.9
GHz processor, and the result can be seen in Chapter 5.

2

3

4

5

6

7
9

1
8

10

Figure 3.7: The R(10) arrangement.

Once again, we looked at the result. V(R(10)) has four translated 0-dimensional
essential components. On the other hand, R(10) has one essential neighbourly partition

π = {{1, 6}, {2, 7}, {3, 8}, {4, 5}, {9, 10}}

which is the double points partition. A small computation reveals that I(π) is 0-
dimensional, so it does not contribute to the characteristic variety. . .

. . . or does it? Let’s have a closer look. If we compute the primary decomposition of
(the radical of) I(π), we find seven ideals:

I1 = (t7 − t9, t6 − 1, t4 + t5 + t8 + t9 + 1, t3 − t5, t2 − t8, t1 − 1, t
2
9 − t8,

t8t9 + t5 + t8 + t9 + 1, t5t9 − 1, t
2
8 − t5, t5t8 − t9, t

2
5 + t5 + t8 + t9 + 1),

I2 = (t7 − t8, t6 − t8, t5 − t8, t4 − t9, t3 − t9, t2 − t9, t1 − t9,

t8t9 + t
2
9 + t8 + t9 + 1, t

2
8 − t9, t

3
9 − t8),

I3 = (t7 − 1, t6 − t9, t4 − t8, t3 + t5 + t8 + t9 + 1, t2 − 1, t1 − t5, t
2
9 − t5,

t8t9 − 1, t5t9 + t5 + t8 + t9 + 1, t
2
8 + t5 + t8 + t9 + 1, t5t8 − t9, t

2
5 − t8),

I4 = (t8 − t9, t5 − 1, t4 − 1, t3 − t6, t2 + t6 + t7 + t9 + 1, t1 − t7, t
2
9 − t6,

t7t9 − 1, t6t9 + t6 + t7 + t9 + 1, t
2
7 + t6 + t7 + t9 + 1, t6t7 − t9, t

2
6 − t7),
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I5 = (t8 − 1, t5 − t9, t4 − t7, t3 − 1, t2 − t6, t1 + t6 + t7 + t9 + 1, t
2
9 − t7,

t7t9 + t6 + t7 + t9 + 1, t6t9 − 1, t
2
7 − t6, t6t7 − t9, t

2
6 + t6 + t7 + t9 + 1),

I6 = (t9 − 1, t5 + t6 + t7 + t8 + 1, t4 − t6, t3 − t7, t2 + t6 + t7 + t8 + 1,

t1 − t8, t
2
8 − t7, t7t8 − t6, t6t8 + t6 + t7 + t8 + 1,

t27 + t6 + t7 + t8 + 1, t6t7 − 1, t
2
6 − t8),

I7 = (t9 − 1, t8 − 1, t7 − 1, t6 − 1, t5 − 1, t4 − 1, t3 − 1, t2 − 1, t1 − 1).

Does it look familiar? Yes, the ideal I2 is the ideal whose zero locus Z(I2) is exactly the four
translated points of V(R(10)). It seems that, after all, this neighbourly partition does
record the translated components.

Let’s look again at B3x and compute J = I({{1, 4, 5}, {2, 3, 7}, {6}, {8}}), the ideal
associated with the double points partition, despite the fact that that partition is not
neighbourly. It turns out that dim(J) = 1, and the primary decomposition of

√
J is

made of two ideals:

I1 = (t6 + 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 + t3, t3t5 + t4,

t24 − t5, t3t4 + 1, t
2
3 − t7),

I2 = (t6 − 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 − t3, t3t5 − t4,

t24 − t5, t3t4 − 1, t
2
3 − t7).

The first one gives the translated component! We are tempted to state a conjecture:

The essential translated components of the characteristic variety V(A) are
found among the zero locus of the ideals in the primary decomposition of
I(π), where π is the double points partition of A.

Unfortunately, this conjecture is false. While we were writing this work, we man-
aged to compute other characteristic varieties thanks to the improved algorithm
variety_from_matrix_conditioned (Section 4.3). It turns out that A(11, 1) is a coun-
terexample: its two essential translated components are 0-dimensional, but the ideals
of the primary decomposition of I(π) (π is the double points partition) are all 1-
dimensional. However, those two point do belong to Z(I(π)).

The situation is worse than we expected: after we tried to formulate other hy-
potheses involving the relationship between translated components and neighbourly
partitions, we decided to test if the essential translated components of V(A(11, 1))
appear in the primary decompositions of ideals I(π), where π is any partition of the
set {1, . . . , 11}. The result is disappointing—none of the primary decompositions of the
I(π)’s contains the ideal of the two essential translated points of V(A(11, 1)). It seems
that neighbourly partitions alone are not sufficient to detect translated components.
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Arrangement Double points partition
Gives translated

component?

B3x {{1, 4, 5}, {2, 3, 7}, {6}, {8}} Yes
R(10) {{1, 6}, {2, 7}, {3, 8}, {4, 5}, {9, 10}} Yes
A(10, 2) {{1, 2, 3, 6, 7, 8, 10}, {4}, {5}, {9}} Yes
Q(4) {{1, 10}, {2, 5, 6, 9}, {3, 4, 7, 8}} Yes
A(11, 1) {{1}, {2, 4, 5, 6, 7, 8, 9, 10}, {3}, {11}} No
R(12) {{1, 4, 7}, {2, 3, 9}, {5, 11, 12}, {6}, {8}, {10}} Yes
A(12, 2) {{1, 4, 5, 6, 8, 10, 11}, {2}, {3}, {7}, {9}, {12}} Yes
R(14) {{1, 8}, {2, 9}, {3, 10}, {4, 7}, {5, 14}, {6, 13}, {11, 12}} Yes

Table 3.1: Double points partitions of some arrangements in Chapter 5.

However, this behaviour is strange. In all the other cases that we computed, the
essential translated components are found among the ideals in the primary decomposi-
tion of I(π), where π is the double point partition. In Table 3.1 we report the double
points partitions of the arrangements in the catalogue of Chapter 5 that have essential
translated components.

Despite being able to compute characteristic varieties only for complexified real
arrangements, we used this method also on arrangements defined directly over C.
The only example that we know comes from [7], where Dan Cohen defines a class of
arrangements that have 1-dimensional translated components.

Definition 3.41. Let r > 2 be an integer. The r-th Cohen arrangement Cohen(r)§1 is the
arrangement in P2(C) of 3r+ 2 lines defined by the following polynomial:

QCohen(r)(X1, X2, X3) = X1X2(X
r
1 − X

r
2)(X

r
1 − X

r
3)(X

r
2 − X

r
3).

Let ζ be a primitive r-th root of unity. We label the 3r + 2 lines in Cohen(r) with
the numbers 1, . . . , 3r+ 2 in the following way:

• if i = k with 1 6 k 6 r, then `i = {X1 − ζ
kX2 = 0};

• if i = r+ k with 1 6 k 6 r, then `i = {X1 − ζ
kX3 = 0};

• if i = 2r+ k with 1 6 k 6 r, then `i = {X2 − ζ
kX3 = 0};

• `3r+1 = {X1 = 0} and `3r+2 = {X2 = 0}.

In [7], Cohen proves that Cohen(r) has r − 1 essential 1-dimensional translated
components, which are given by

Cq := {(ζq, . . . , ζq, v, . . . , v, u, . . . , u, ur, vr) ∈ (C∗)3r+2 | uvζq = 1}

§1This is the arrangement that Cohen denotes with Dr in [7], and that we cited before.
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for q = 1, . . . , r− 1.
Notice that Cohen(2) is actually B3x, so we studied the case r = 3. The singular

points of Cohen(3) are

L2(Cohen(3)) = {{4, 11}, {5, 11}, {6, 11}, {7, 10}, {8, 10}, {9, 10}, {1, 4, 9}, {1, 5, 7},

{1, 6, 8}, {2, 4, 8}, {2, 5, 9}, {2, 6, 7}, {3, 4, 7}, {3, 5, 8}, {3, 6, 9},

{4, 5, 6, 10}, {7, 8, 9, 11}, {1, 2, 3, 10, 11}},

so the double points graph is

4

5
11

6

7

8
10

9
1 2 3

and the double points partition is π = {{1}, {2}, {3}, {4, 5, 6, 11}, {7, 8, 9, 10}}. Let us com-
pute the primary decomposition of

√
I(π):

I1 = (t7 + t8 + t9, t4 + t5 + t6, t2 + t3 + 1, t1 − 1, t10t11 − 1, t
2
9 + t5t10 + t6t10,

t8t9 − t5t10, t6t9 + t3 + 1, t5t9 − t3, t3t9 − t8, t
2
8 − t6t10, t6t8 − 1,

t5t8 + t3 + 1, t3t8 + t8 + t9, t
2
6 − t8t11, t5t6 − t9t11, t3t6 + t5 + t6,

t25 + t8t11 + t9t11, t3t5 − t6, t
2
3 + t3 + 1),

I2 = (t8 − t9, t7 − t9, t5 − t6, t4 − t6, t2 − t3, t1 − t3, t10t11 − 1, t6t9 + t3 + 1,

t23 + t3 + 1, t
2
9t11 − t3t6, t3t9t11 − t

2
6, t

2
6t10 − t3t9, t3t6t10 − t

2
9, t

3
9 − t10,

t3t
2
9 + t

2
9 + t6t10, t

3
6 − t11, t3t

2
6 + t

2
6 + t9t11),

I3 = (t7 + t8 + t9, t4 + t5 + t6, t2 − 1, t1 + t3 + 1, t10t11 − 1, t
2
9 − t5t10,

t8t9 − t6t10, t6t9 + t3 + 1, t5t9 − 1, t3t9 + t8 + t9, t
2
8 + t5t10 + t6t10,

t6t8 − t3, t5t8 + t3 + 1, t3t8 − t9, t
2
6 + t8t11 + t9t11, t5t6 − t8t11, t3t6 − t5,

t25 − t9t11, t3t5 + t5 + t6, t
2
3 + t3 + 1),

I4 = (t7 + t8 + t9, t4 + t5 + t6, t3 − 1, t1 + t2 + 1, t10t11 − 1, t
2
9 − t6t10,

t8t9 + t5t10 + t6t10, t6t9 − 1, t5t9 + t2 + 1, t2t9 − t8, t
2
8 − t5t10, t6t8 − t2,

t5t8 − 1, t2t8 + t8 + t9, t
2
6 − t9t11, t5t6 + t8t11 + t9t11, t2t6 + t5 + t6,

t25 − t8t11, t2t5 − t6, t
2
2 + t2 + 1),

I5 = (t8 − t9, t7 − t9, t5 − t6, t4 − t6, t3 − 1, t2 − 1, t1 − 1, t10t11 − 1,

t29 − t6t10, t6t9 − 1, t
2
6 − t9t11).

This is the primary decomposition over the “computational” field, i.e. Q; but if we
consider the above ideals to belong to the polynomial ring with complex coefficients,
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we find out that I2 = I ′2 ∩ I ′′2 , where

I ′2 = (t8 − t9, t7 − t9, t5 − t6, t4 − t6, t3 − ζ, t2 − ζ, t1 − ζ, t10t11 − 1,

t29 − ζt6t10, t6t9 − ζ
2, t26 − ζt9t11),

I ′′2 = (t8 − t9, t7 − t9, t5 − t6, t4 − t6, t3 − ζ
2, t2 − ζ

2, t1 − ζ
2, t10t11 − 1,

t29 − ζ
2t6t10, t6t9 − ζ, t

2
6 − ζ

2t9t11),

and ζ is a 3-rd root of unity. It is not hard to see that

C1 = Z(I ′2) and C2 = Z(I ′′2 ),

that is to say, also for Cohen(3) it is true that the double points partition encodes the
information of at least some of the translated components of its characteristic variety.

3.8 Further Analysis of Regular Arrangements

We focus here on the regular arrangements R(2m) with m > 3 odd, trying to deduce
some result at least for this class of arrangement.

The properties of the regular arrangements are better understood if we use a
particular labelling of the lines, which we call cyclic labelling: we number the sides of
the m-agon from 0 to m− 1 cyclically, and use labels 0 ′, . . . , (m− 1) ′ for the axes, such
that axis i ′ is the one perpendicular to side i.

1

4

2

3

3 ′

1 ′

4 ′

2 ′

0

0 ′

1

4

2

3

3 ′

1 ′

4 ′

2 ′

0

0 ′

Figure 3.8: Example of cyclic labelling on R(10).

With the cyclic labelling, it is easy to characterize the elements of L2(R(2m)):
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• there are m double points, which are {i, i ′} for i = 0, . . . ,m− 1;

• the triple points are
(
m
2

)
: for each i, j ∈ {0, . . . ,m− 1} with i 6= j there is the triple

point {
i, j,

(
i+ j

2
(mod m)

) ′}
(notice that 2 is always invertible since m is odd);

• the central m-tuple point is {0 ′, . . . , (m− 1) ′}.

Lemma 3.42. The double points partition π = {{i, i ′} | i = 0, . . . ,m− 1} is neighbourly.

Proof. Each double point belongs to a single block of π by definition. For the m-tuple
point P, notice that P ∩ {i, i ′} = {i ′}, so the premise of the neighbourly condition (3.3) is
always false (1 > m− 1).

In general, it is easy to see that, if {x, y, z} is a triple point and σ is a neighbourly
partition, then x, y and z belong either to the same block, or to three different blocks.
In this case a triple point can’t be contained in a single block, because all blocks have
cardinality 2; the neighbourly condition fails only if

i+ j

2
≡ i or

i+ j

2
≡ j (mod m).

Both equivalences imply i ≡ j (mod m), which is false by definition of the triple
point.

Lemma 3.43. The double points partition π is the only (non-trivial) essential neighbourly
partition if and only if m is a prime number.

Proof. ⇒ Suppose that m = pq with p > 3, q > 3 odd numbers (not necessarily
prime). Then the following partition is neighbourly:

π ′ := {πa | a = 0, . . . , q− 1}

where
πa := {a+ kq | k = 0, . . . , p− 1} ∪ {(a+ kq) ′ | k = 0, . . . , p− 1}.

Let’s prove that π ′ is neighbourly. The double points are contained in a single block by
definition; for the m-uple point P we have

P ∩ πa = {(a+ kq) ′ | k = 0, . . . , p− 1}

therefore #(P ∩ πa) = p and the condition #(P ∩ πa) > m− 1 is always false. Now we
check the triple points: let {i, j, ((i+ j)/2) ′} be one of them.
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• If i and j belong to the same block, i.e. i = a + k1q and j = a + k2q for some
k1, k2, then

i+ j

2
≡ a+

(
k1 + k2
2

(mod p)
)
q (mod m)

and the triple point is contained in a single block of π ′.

• If i and j belong to different blocks, i.e. i = a + k1q and j = b + k2q for some
k1, k2 and a 6= b, then

i+ j

2
≡
(
a+ b

2
(mod q)

)
+

(
h+ k1 + k2

2
(mod p)

)
q (mod m)

where h is such that a + b = ((a+ b) (mod q)) + hq. In particular ((i + j)/2) ′

belongs neither to πa nor to πb.

⇐ Let π ′ be a neighbourly partition. Recall that π ′ has to be a superpartition of π;
suppose that there is a block π̃ of π ′ containing the lines i and j with i 6= j (and lines i ′,
j ′ too). We want to show that that block must contain also all the other lines.

Since there is a triple point {i, j, ((i+ j)/2) ′}, we have that (i+ j)/2 (mod m) (and
((i+ j)/2) ′ (mod m)) belongs to π̃. We can repeat the reasoning with the triple points
given by i ∩ (i+ j)/2 and j ∩ (i+ j)/2 and obtain that the two values

3i+ j

4
,
i+ 3j

4
(mod m)

and their primed versions must belong to π̃. If we iterate h times, we obtain that all
the 2h−1 values

(2h − 1)i+ j

2h
,
(2h − 3)i+ 3j

2h
, . . . ,

i+ (2h − 1)j

2h
(mod m)

must belong to π̃. We have the thesis if we prove that for all r = 0, . . . ,m− 1 there exist
h > 0 and 1 6 a 6 2h − 1 odd such that

r ≡ ai+ (2h − a)j

2h
(mod m).

A bit of elementary algebra brings to

a ≡ 2h r− j
i− j

(mod m) (3.8)

which is well-defined since i − j 6= 0, hence invertible (m is a prime number by
hypothesis). Now write

r− j

i− j
(mod m) = 2s r̃

(as integers) with s > 0 and r̃ odd; a solution of (3.8) is given by

a = r̃, h = u (m− 1) − s

with u big enough so that a 6 2h − 1.
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We will study the regular arrangements R(2m) with m prime. Let π be the double
points partition; we consider I(π) as an ideal in the Laurent polynomial ring

C[T±10 , . . . , T±1m−1, S
±1
0 , . . . , S±1m−1]

where Ti is the variable associated with line i and Si is associated with i ′. Since the
singular points not contained in a single block of π are all the triple points and the
m-tuple point, the generators of I(π) are:

• p(T ,S) := T0 · · · Tm−1S0 · · ·Sm−1 − 1;

• qm(T ,S) := S0 · · ·Sm−1 − 1;

• for all i, j ∈ {0, . . . ,m − 1} with i 6= j, gij(T ,S) := TiTjSk − 1 where k = (i + j)/2

(mod m).

Let ω be a primitive m-th root of unity; the point

(t0, . . . , tm−1, s0, . . . , sm−1) ∈ (C∗)2m (3.9)

with ti = ω and si = ωm−2, for i = 0, . . . ,m− 1, belongs to Z(I(π)) (easy verification).
In particular we find m − 1 such points, when ω varies between all primitive m-th
roots of unity.

Conjecture 3.44. These m − 1 points are essential 0-dimensional translated components of
V(R(2m)) for all primes m > 3.

For m = 5 and m = 7 this is verified by computing directly V(R(10)) and V(R(14))
(see Chapter 5). For higher values of m, we are able to compute the matrix [∂2] with
the algorithm delta2 (Section 4.1) and evaluate it in the points (3.9); all these points
belong to the respective characteristic varieties, since they lower the rank of [∂2], but
we still have to prove that:

1. they belong to V(R(2m)) for all primes m > 3;

2. they are isolated points.
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Chapter 4

Algorithms for Arrangements

In this chapter we present the algorithms that we use to investigate the properties of
hyperplane arrangements. Some of them were originally written by Salvetti using the
Axiom language; we upgraded them to the SageMath language [40], in order to make
use of its powerful functionalities.

Remark. We present only the main algorithms that we used. Other procedures that we
wrote and that are not found in SageMath will be explained, but their code won’t be
outlined.

4.1 The ∂2 Matrix

Given an affine arrangement arr with n lines, the following algorithm computes
a matrix with coefficients in Q[t1, . . . , tn] that represents the boundary operator ∂2
(Formula (2.2)).

1 def delta2(arr):

2 nh=arr.n_hyperplanes()

3 RNG=PolyRingQ(nh)

4 t=PolyRingVariables(RNG)

5 L_sing=sing_up_lo(arr)

6 L=order_sing(L_sing)

7 d2=[]

8 for pt in L: # remember that pt=[S(P),U(P),L(P)]

9 SP=pt[0]

10 UP=pt[1]

11 ns=len(SP)

12 nu=len(UP)

13 minSP=min(SP) # first line of Cone(P)

45
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14 maxSP=max(SP) # last line of Cone(P)

15 for j in xrange(ns-1):

16 row=[0 for k in xrange(nh)]

17 minC=SP[j] # first line of chamber C_j

18 maxC=SP[j+1] # last line of chamber C_j

19 for i in xrange(ns): # 1st sum: iterate on the 1-cells in S(P)

20 p=1

21 p1=1

22 p2=1

23 hi=SP[i]

24 for k in xrange(hi-1):

25 if k+1 in UP:

26 p=p*t[k+1]

27 if i>j: # distinguish the two cases for [C_i->hi)

28 for k in xrange(j+1,i):

29 p1=p1*t[SP[k]]

30 else:

31 for k in xrange(j+1,ns):

32 p1=p1*t[SP[k]]

33 for k in xrange(i):

34 p1=p1*t[SP[k]]

35 for k in xrange(i):

36 p2=p2*t[SP[k]]

37 row[hi-1]=p*(p1-p2)

38 for i in xrange(nu): # 2nd sum: iterate on 1-cells in U(P)...

39 hi=UP[i]

40 p=1

41 p1=1

42 p2=1

43 p3=1

44 p4=1

45 if minSP<=hi and hi<=maxSP: # ... that belong to Cone(P)

46 for k in xrange(hi-1):

47 if k+1 in UP:

48 p=p*t[k+1]

49 for k in xrange(j+1,ns): # lines in U(C) (in S(P) and

>=maxC)↪→

50 if SP[k]<hi:

51 p1=p1*t[SP[k]]

52 p3=p3*t[SP[k]]



4.1. The ∂2 Matrix 47

53 mi=max([hi,maxC])

54 for k in range(ns): # lines in S(P)

55 if SP[k]<hi: # recall that S(P)=L(C)+U(C)

56 p2=p2*t[SP[k]]

57 if SP[k]<hi or SP[k]>=mi:

58 p4=p4*t[SP[k]]

59 row[hi-1]=p*(p1-p2-p3+p4)

60 d2=d2+[row]

61 result=matrix(d2).transpose()

62 return result

Let us analyse the previous code more in detail. The input arr is supposed to be a hy-
perplane arrangement in SageMath (i.e. an instance of HyperplaneArrangementElement).
PolyRingQ(n) is a procedure that defines the polynomial ring Q[t_1, . . . , t_n]; then
PolyRingVariables defines the vector t such that t[i] = t_i.§1

The procedure sing_up_lo returns a list of the singular points of arr together with
the information about the lines passing above and below. In particular, L_sing contains
for every P ∈ Sing(A) a triple [S(P), U(P), L(P)] where S(P), U(P) and L(P) have the
same meaning of Section 2.3. (Actually, in the algorithm they contain the labels of the
lines of arr, not the lines themselves.) order_sing orders the list of singular points with
respect to the following: given two lists [S(P1), U(P1), L(P1)] and [S(P2), U(P2), L(P2)],
we say that P1 > P2 if max(S(P1)) > max(S(P2)), or max(S(P1)) = max(S(P2)) and
min(S(P1)) ∈ U(P2).

We begin building the matrix d2. Notice that the algorithm actually computes
[∂2]

T and then transposes it just before returning it. For every point pt, we extract the
meaningful information (lines 9–14) and add #(S(pt)) − 1 rows, one for each 2-cell of
the form (Cj, pt). Then we populate each row with the corresponding coefficients.

• Lines 19–37 deals with the first summation of Formula (2.2), i.e. the lines passing
through pt; each addend has the form (Πt)(Πt − Πt), and the three products
correspond to lines 24–26, 27–34 and 35–36 respectively.

• Lines 38–59 deals with the second summation of Formula (2.2), i.e. the lines in
Cone(pt) passing above pt; each addend has the form (Πt)(1 − Πt)(Πt − Πt),
and lines 46–48 compute the first product. The remaining part of the addend is
computed distributing (1−A)(B− C) = B− C−AB+AC and computing each
of these separately. More precisely, lines 50–51 compute B (lines in U(Cj) less
than hi) and line 52 computes C (all lines in U(Cj)); lines 55–56 compute AB and
lines 57–58 compute AC with a trick:

§1Recall that in SageMath, as in Python, the first element of a list L is L[0], not L[1].
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– if hi > maxC, then all the lines in L(Cj) are less than hi, so all the lines in
S(pt) have to be included;

– if hi < maxC, then no line in U(Cj) is less than hi, so it suffices to take the
lines in S(pt) less than hi for factor A and all the lines greater or equal than
maxC (i.e. the lines in U(Cj)) for factor C.

4.2 The Characteristic Variety

The following algorithm takes a polynomial matrix mat (that represents a boundary ∂2),
the number of variables nv, and an integer k, and returns the primary decomposition
of the (radical of the) ideal generated by all the k× k minors of mat, that is to say, the
components of the characteristic variety Vk(arr) if mat = delta2(arr).

1 def zeroset(mat,k,nv):

2 RNG=PolyRingQ(nv)

3 zeros=[]

4 gen_pt=[randint(0,999) for i in xrange(nv)]

5 nr=mat.nrows()

6 nc=mat.ncols()

7 row_list=sorted([sorted(list(x)) for x in Subsets(xrange(nr),k)])

8 col_list=sorted([sorted(list(x)) for x in Subsets(xrange(nc),k)])

9 notempty=False

10 for rr in row_list:

11 if notempty:

12 break

13 for cc in col_list:

14 mink=mat.matrix_from_rows_and_columns(rr,cc)

15 dk=mink.determinant()

16 if dk==0:

17 continue

18 dkfactors=[x[0] for x in dk.factor() if x[0] not in RNG.gens()]

19 list_id=[[x] for x in dkfactors]

20 rr0=rr

21 cc0=cc

22 notempty=True

23 break

24 if not notempty:

25 return []

26 for rr in row_list[row_list.index(rr0):]:

27 for cc in col_list:
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28 if rr==rr0 and col_list.index(cc)<=col_list.index(cc0):

29 continue

30 mink=mat.matrix_from_rows_and_columns(rr,cc)

31 dk=mink.determinant()

32 if dk==0:

33 continue

34 dkfactors=[x[0] for x in dk.factor() if x[0] not in RNG.gens()]

35 list_id_aux=[]

36 for idl in list_id:

37 matidl=mat.apply_map(lambda x: RNG.ideal(idl).reduce(x))

38 matnum=matidl.apply_map(lambda x: x(gen_pt))

39 if matnum.rank()<k:

40 zeros=zeros+[idl]

41 continue

42 for g in dkfactors:

43 list_id_aux=list_id_aux+[[sqfree(x) for x in

RNG.ideal(idl+[g]).groebner_basis()]]↪→

44 if list_id_aux==[]:

45 continue

46 list_id_red=reduce_ideal_list([RNG.ideal(idl) for idl in

list_id_aux])↪→

47 list_id=[idl.groebner_basis() for idl in list_id_red]

48 zeros=zeros+list_id

49 zeros_red=reduce_ideal_list([RNG.ideal(idl) for idl in zeros])

50 return [RNG.ideal(idl.groebner_basis()) for idl in zeros_red]

The algorithm begins with the definition of the ring RNG = Q[t_1, . . . , t_n]. The list
zeros will store the result. On line 4, gen_pt is a random point of Qn that will be used
later to speed up the computation of the rank.

After having set up the two lists row_list and col_list, that contain the possible
choices of rows and columns for a k × k minor, the algorithm begins to look for a
non-zero minor (lines 9–23). For every possible choice of rr and cc, the algorithm
computes the corresponding minor (line 14); if it is not zero, its factors are stored
in dkfactors§2 and a list of ideals is built—each factor belongs a priori to a different
component of the primary decomposition.

After line 23, (rr0, cc0) is the first non-zero minor, and list_id contains the
singletons of its factors; if all minors are zero (lines 24–25), then for all the points of
(C∗)n the rank of mat is less than k and the empty list is returned. Otherwise, the

§2Factors of the form t_i are not considered, because the coefficients are thought to be Laurent
polynomials (hence the t_i’s should be invertible), but SageMath works with “true” polynomials.
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algorithm continues with the other minors (lines 26–27), skipping the ones that it
knows to be zero (lines 28–29).

When the algorithm finds another non-zero minor (i.e. it passes the check of lines
32–33), it factors the minor and prepares an auxiliary list. Then, for all the “partial
components” idl of list_id, it tries to compute the rank of mat under the conditions
given by idl. To do so, it reduces the coefficients modulo idl (line 37) and evaluates
the matrix in a random point (line 38)—it is easier to compute the rank of a matrix with
rational coefficients than a matrix with polynomial ones. If the rank of mat modulo idl

is low enough, idl is an admissible component: the algorithm adds it to the list zeros
and continues.

The next step is to upgrade the “partial components” of list_id with the factors of
the new non-zero minor. In lines 42–43, we add to the auxiliary list the new partial
components (idl, g) for each factor g of the minor.§3 Notice that a component idl that
has been added to zeros does not reach this stage.

When all the partial components of list_id have been examined (after line 43),
the algorithm checks if list_id_aux is empty: in this case, the new minor does not
add new information, and the algorithm proceeds with the next one. Otherwise
(lines 46–47), it upgrades the list of partial components with the new ones. The
procedure reduce_ideal_list receives a list of ideals L and returns another list of
ideals L ′ = [J ∈ L | @I ∈ L s.t. I Ď J], i.e. the minimal ideals among the ones of L. Since
I Ď J implies Z(I) Ě Z(J), where Z(I) is the zero locus of I, this operation discards
embedded components of the variety.

After line 47, all the minors have been computed. The list zeros contains the
components found during the execution, except maybe the ones that arise from the
last minor. Therefore we just add them (line 48) and reduce the list once more (line 49).
The list of components is then returned.

The algorithm zeroset computes the characteristic variety by examining all k× k

minors. Their number is huge. Recall that the matrix has n = #(arr) rows and
ν =
∑

P∈Sing(arr)

(m(P) − 1) columns, bringing a total of

(
n

k

)(
ν

k

)
minors. Therefore this algorithm becomes unfeasible when the number of lines is more
than eight or nine. Let us try to improve it.

Let R1, . . . , Rn be the rows of [∂2]. Since ∂1∂2 = 0, we have a relation

(t1 − 1)R1 + · · ·+ (tn − 1)Rn = 0. (4.1)

§3Surprisingly, sqfree is not part of SageMath. It returns the square-free part of the polynomial given in
input.
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If t1 6= 1, we can divide by t1 − 1 and obtain

R1 = −
t2 − 1

t1 − 1
R2 − · · ·−

tn − 1

t1 − 1
Rn.

Let [∂2]i be the matrix [∂2] with the i-th row removed. The last equation implies

rk([∂2]) < n− 1 ⇔ rk([∂2]1) < n− 1

so zeroset([∂2]1,nv-1,nv) actually returns the components of the characteristic variety
not contained in the zero locus of the ideal (t1 − 1).

Now suppose t1 = 1; Equation (4.1) becomes

(t2 − 1)R2 + · · ·+ (tn − 1)Rn = 0

and if t2 6= 1, we can write R2 as a combination of the other lines; this implies that

rk([∂2](1, t2, . . . , tn)) < n− 1 ⇔ rk([∂2]2(1, t2, . . . , tn)) < n− 1

and we can call zeroset on [∂2]2(1, t2, . . . , tn). This computes the components contained
in the zero locus of (t1 − 1) but not in the one of (t2 − 1).

We can continue inductively assuming t1 = · · · = ti = 1 and computing the
components contained in Z(t1 − 1, . . . , ti − 1) but not in Z(ti+1 − 1). Instead of calling
zeroset once, we call it n times on matrices with n − 1 rows. This brings a little
improvement to the algorithm: it can compute characteristic varieties of arrangements
with up to ten lines in reasonable time.

1 def variety_from_matrix(mat,nv):

2 RNG=PolyRingQ(nv)

3 t=PolyRingVariables(RNG)

4 nr=mat.nrows()

5 nc=mat.ncols()

6 result=[]

7 quotid=RNG.ideal([])

8 for i in xrange(nr):

9 matred=mat.delete_rows([i])

10 matred=matred.apply_map(lambda x: x(i*[1]+t[i+1:]))

11 if matred.rank()<nv-1:

12 result=result+[quotid]

13 break

14 list_i=zeroset(matred,nv-1,nv)

15 pi=RNG.ideal(t[i+1]-1)

16 list_i.remove(pi)
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17 if quotid!=RNG.ideal([]):

18 list_i=[RNG.ideal((u+quotid).groebner_basis()) for u in list_i]

19 quotid=quotid+pi

20 result=result+list_i

21 if result==[]:

22 return [RNG.ideal([t[i+1]-1 for i in xrange(nv)])]

23 result=[x.radical().primary_decomposition() for x in result]

24 result=reduce_ideal_list([x for sublist in result for x in sublist])

25 return result

The previous algorithm is quite linear. The ideal quotid is (0) in the beginning, and it
is (t1−1, . . . , ti−1) after the i-th for cycle (lines 8–22).§4 At every cycle, the i-th row is
removed from mat, then all coefficients are evaluated at t1 = · · · = ti = 1 (line 10). If we
reached the limit rank (line 11–13), it is useless to proceed further: all the subsequent
ideals that the algorithm finds contain the ideal quotid, therefore the components
associated with them are contained in Z(quotid), which belongs to the characteristic
variety.

The algorithm then calls zeroset on the reduced matrix, and stores the result in
list_i. Notice that

(ti − 1)Ri + · · ·+ (tn − 1)Rn = 0

implies that ti = 1 always lowers the rank of [∂2]i(1, . . . , 1, ti, . . . , tn). This means
that list_i contains (ti − 1) and the other components in list_i do not contain the
polynomial ti − 1; since we assume ti 6= 1 during the i-th cycle, we can safely remove
(ti − 1) (line 16).

The remaining part of the algorithm is simple. We put back the conditions (t1 −

1, . . . , ti−1− 1) in the components of list_i and upgrade the variables (lines 17–20). If
result is still empty after the for cycle, it means that the components are all contained
in the one defined by (t1 − 1, . . . , tn − 1), that is the single point (1, . . . , 1), and we
return that ideal. Otherwise, we compute again the primary decompositions (the
output of zeroset is a list of primary ideals, but they can no longer be so once we add
relations ti − 1), merge the results and reduce again the list.

4.3 The Characteristic Variety, Part II

Despite the improvement, the algorithms outlined in the previous section do not allow
us to compute characteristic varieties for arrangement with too many lines. Of course,

§4In this description, the variable i in the text and the variable i in the algorithm have a slight different
meaning, because indices in SageMath begin with 0. The relation is i = i+ 1.
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this is due to the amount of minors involved. The next algorithm avoids the problem:
it computes the rank of the matrix DD by reducing it in echelon form.

The idea behind the algorithm is the following: if the first entry is a non-zero
polynomial p, bifurcate the computation assuming p = 0 on one branch and p 6= 0

on the other. In the branch p = 0, reduce the matrix modulo p and repeat; in the
branch p 6= 0, row-reduce the matrix in order to have zero entries under p, then call
the algorithm on the submatrix obtained by removing the first row and column.

Let us have a closer look at the algorithm. Its inputs are a matrix DD with polynomial
coefficients, the number of variables n, the rank k (i.e. we want the matrix to have rank
strictly less than k), the “known rank” rk (which is 0 in the beginning), and two lists
of polynomials: zero contains the polynomials that are assumed to be 0, and nonzero

contains the ones that are assumed to be different than 0; both lists are empty in the
beginning.

1 def variety_from_matrix_conditioned(DD,n,k,rk=0,zero=[],nonzero=[]):

2 R=PolyRingQ(n)

3 if rk>=k:

4 return []

5 if DD.nrows()==0 or DD.is_zero():

6 component=R.ideal(zero)

7 for p in nonzero:

8 component=component.saturation(R.ideal(p))[0] # saturation

returns a pair (ideal,saturation index)↪→

9 return [R.ideal(component.groebner_basis())]

10 D=copy(DD) # just precautionary

11 found=False

12 minpoly=R.zero()

13 i0=0

14 j0=0

15 for i in xrange(D.nrows()):

16 for j in xrange(D.ncols()):

17 if D[i,j].numerator()!=R.zero():

18 fact=[f[0] for f in

remove_multi_t_powers(D[i,j].numerator()).factor()]↪→

19 if Set(fact).issubset(Set(nonzero)):

20 found=True

21 break

22 if minpoly.is_zero() or D[i,j].numerator()<minpoly:

23 minpoly=D[i,j].numerator()

24 i0=i
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25 j0=j

26 if found:

27 break

28 if found:

29 if i!=0:

30 D.permute_rows(Permutation([(1,i+1)]))

31 if j!=0:

32 D.permute_columns(Permutation([(1,j+1)]))

33 for i in xrange(1,D.nrows()):

34 D=D.with_added_multiple_of_row(i,0,-D[i,0]/D[0,0])

35 redD=copy(D).apply_map(lambda q:

R(q.numerator()).reduce(R.ideal(zero))/q.denominator())↪→

36 return variety_from_matrix_conditioned(redD[1:,1:],n,k,rk+1,zero,no c
nzero)↪→

37 else:

38 res=[]

39 if i0!=0:

40 D.permute_rows(Permutation([(1,i0+1)]))

41 if j0!=0:

42 D.permute_columns(Permutation([(1,j0+1)]))

43 fact=[f[0] for f in

remove_multi_t_powers(D[0,0].numerator()).factor()]↪→

44 for f in fact:

45 gb=R.ideal(zero+[f]).groebner_basis()

46 avoid=False

47 for g in nonzero:

48 if g in R.ideal(gb):

49 avoid=True

50 break

51 if avoid:

52 continue

53 newD=copy(D).apply_map(lambda q:

R(q.numerator()).reduce(R.ideal(gb))/q.denominator())↪→

54 res=res+variety_from_matrix_conditioned(newD,n,k,rk,list(gb),non c
zero)↪→

55 for i in xrange(1,D.nrows()):

56 D=D.with_added_multiple_of_row(i,0,-D[i,0]/D[0,0])

57 redD=copy(D).apply_map(lambda q:

R(q.numerator()).reduce(R.ideal(zero))/q.denominator())↪→
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58 res=res+variety_from_matrix_conditioned(redD[1:,1:],n,k,rk+1,zero,n c
onzero+fact)↪→

59 res=reduce_ideal_list(res)

60 res=sum([J.radical().primary_decomposition() for J in res],[])

61 return reduce_ideal_list(res)

If the known rank rk has already reached the limit rank k, the conditions define an
ideal that does not give a component of the characteristic variety, and the branch closes
returning nothing (lines 3–4). After line 4, the original matrix DD has surely rank strictly
less than k, and we can check if the terminating conditions are met: either there are no
more rows, or the new matrix DD is the zero matrix. In the latter case, it means that the
algorithm managed to reduce DD to a form like

d1 ∗ ∗ ∗ · · · ∗

0
. . . ∗ ∗ · · · ∗

0 0 dh ∗ · · · ∗
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


where d1, . . . , dh are non-zero rational functions with h 6 k− 1 and ∗ denotes possible
non-zero entries. In any case, this means that rk(DD) = rk > k − 1, so the list zero
defines an ideal whose zero locus belongs to the characteristic variety. The algorithms
takes care also of the nonzero condition by saturating the ideal (zero) with respect to
each p ∈ (nonzero): the result of this operation is an ideal I such that

Z(I) = Z(zero) ∩
⋂

p∈nonzero
Z(p)c,

and the algorithm returns (a Gröbner basis of) that ideal.
After line 10, we are sure that D has not achieved the limit rank, and there is still a

non-zero coefficient. We want to put it in the top-left corner of the matrix and use it to
reduce the first column in echelon form. The algorithm looks for a non-zero element
following two criteria:

1. first of all, it looks for a coefficient whose factors are all in the nonzero list, so
that this coefficient can be used to reduce the matrix without bifurcate further;

2. meanwhile, it looks for the minimum non-zero coefficient with respect to the
term order defined on the ring R (which is degrevlex by default), in the hope
that subsequent computation of Gröbner bases won’t get too big.
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The lines 11–27 do this search. The procedure remove_multi_t_powers takes a poly-
nomial p and returns a polynomial q such that Ti ffl q for all i = 1, . . . , n and
p(T ) = Ta11 · · · T

an
n q(T ) for some a1, . . . , an ∈ N. This is needed because the algo-

rithm works with “true” polynomials, but we interpret them as Laurent polynomials.
After line 27 there are two possible outcomes: either found is true and (i, j) is the
position of a known non-zero coefficient (i.e. its factors are in nonzero), or found is false
and (i0, j0) is the position of the minimum non-zero polynomial. In the former case,
lines 28–36 are executed; in the latter, lines 37–61 are.

If found is true, the algorithm permutes the rows and columns so to have the
non-zero polynomial in position (0, 0), then the matrix is reduced (lines 33–34). During
this operation, it is possible that some polynomials belonging to (zero) appear among
the coefficients. Notice that the algorithm does not know that these are assumed to be
zero: its working ring is R, not R

/
(zero). Therefore we need to get rid of these extra

polynomials (line 35), because they may distort the rank computation. The algorithm
then calls itself on the matrix without the first row and column, with the new known
rank equal to rk+ 1.

If found is false, we need to bifurcate. The list res will contain the result of the
computation. After having put the non-zero polynomial in the top-left corner (lines
39–42), the algorithm factors it (line 43) and opens a new branch for each factor f (lines
44–54). First of all, the algorithm computes a Gröbner basis of the ideal (zero, f), then
it checks the compatibility of f with the nonzero conditions: a polynomial g ∈ nonzero

cannot belong to the ideal (zero, f), because that ideal contains the polynomials that
are assumed to be zero. For example, suppose that t1t3−1 ∈ zero and t3−1 ∈ nonzero;
a human being interprets this conditions as “t3 and t1 are inverse of each other, so
if t3 6= 1 it can’t be t1 = 1” and will discard a factor t1 − 1. This is what lines 46–52

do—in the example we have t3 − 1 ∈ (t1t3 − 1, t1 − 1). If the branch is compatible, the
algorithm reduces the matrix modulo (zero, f) and calls itself without removing rows
and/or columns, without upgrading the known rank and upgrading the zero list (line 54).

Once all the factors have branched, the algorithm opens the last branch, in which
the pivot is supposed non-zero. Lines 55–58 are similar to lines 33–36, only in this case
the list nonzero is upgraded with the new known non-zero polynomials, i.e. the factors
in fact. Finally, the results of all branches are collected and reduced; the primary
decompositions are computed, and the result is once again reduced and returned.

Despite the numerous branching, this algorithm is far more faster than the one
presented in the previous section. As an example, compare the computation time
needed to compute the characteristic variety of aB3x (see Chapter 5 for the reference)
with a processor Intel® Xeon® E5-2643 v4 @ 3.4GHz (Table 4.1).

Unfortunately, variety_from_matrix_conditioned has its limits: the problem here
is the computation of Gröbner bases. The polynomials in the successive reductions of
the matrix can become very big and both the time and the memory needed to compute
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Algorithm time

variety_from_matrix 13 min 10 s
variety_from_matrix_conditioned 17.6 s

Table 4.1: Comparison of times between different algorithms that compute the charac-
teristic variety.

the Gröbner bases grow too much. However this algorithm successfully computes
characteristic varieties of arrangements with up to 14 lines with little trouble.

4.4 Neighbourly Partitions

In this section we present a couple of algorithms that we have developed in order to
study the relationship between neighbourly partitions and characteristic varieties.

The first algorithm returns the list of non-local neighbourly partitions of all subar-
rangements of the affine arrangement arr. Recall that we need to look for neighbourly
partitions only among superpartitions of the double points partition (Definition 3.19).

The algorithm actually returns a list of pairs (supp(π), π) where π is a non-local
neighbourly partition for the subarrangement of arr defined by the lines in supp(π).

1 def nonlocal_neighbourly_partitions(arr):

2 n=arr.n_hyperplanes()

3 S=sing_with_infinity(arr)

4 neigh=[]

5 for subarr in Subsets(n+1):

6 Ssub=[[h for h in s if h in subarr] for s in S]

7 Ssub=[s for s in Ssub if len(s)>=2]

8 if len(Ssub)<=1:

9 continue

10 G=Graph([list(subarr),[s for s in Ssub if len(s)==2]])

11 if G.is_connected():

12 continue

13 Part=SetPartitions(make_partition(G.connected_components()))

14 for setpart in Part:

15 if len(setpart)==1:

16 continue

17 partition=make_partition([sum(p,Set([])) for p in setpart])

18 neighbourly=True

19 for part in partition:
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20 for pt in Ssub:

21 if part.intersection(Set(pt)).cardinality()>=len(pt)-1 and

not Set(pt).issubset(part):↪→

22 neighbourly=False

23 break

24 if not neighbourly:

25 break

26 if neighbourly:

27 neigh+=[(subarr,partition)]

28 return neigh

The procedure sing_with_infinity returns L2(arr) completed with the singularity at
infinity of arr, that is to say, if n = #(arr), then sing_with_infinity(arr) includes
also the sets {i1, . . . , ik, n+ 1} whenever `i1 , . . . , `ik are parallel lines of arr.§5

The algorithm passes through all possible subarrangements of parr (line 5) and
accumulates the result in the list neigh. For each subarrangement subarr, the algo-
rithm builds the set of singular points L2(subarr) (lines 6–7); then it checks if the
subarrangement is trivial (lines 8–9): the condition len(Ssub) 6 1 is satisfied if and
only if either the arrangement is central (only one singular point), or it has only one
line (no singular points at all), or it is empty. These trivial cases are discarded.

If subarr is not trivial, its double points graph is built (line 10); if it is connected,
the only neighbourly partition of subarr is the trivial one, and the algorithm continues
with the next subarrangement; otherwise, the algorithm defines the set of partitions
of the set whose elements are the blocks of the double point partition (line 13). By
merging those blocks we obtain the superpartitions of the double points partition. For
example, suppose that the double points partition is {{1, 2}, {3}, {4}}. Then Part has five
elements:

{{{1, 2}, {3}, {4}}}, {{{1, 2}}, {{3}, {4}}}, {{{1, 2}, {3}}, {{4}}},

{{{1, 2}, {4}}, {{3}}}, {{{1, 2}}, {{3}}, {{4}}},

and if we remove the innermost braces we get the superpartitions

{{1, 2, 3, 4}}, {{1, 2}, {3, 4}}, {{1, 2, 3}, {4}},

{{1, 2, 4}, {3}}, {{1, 2}, {3}, {4}}.

Here make_partition is an auxiliary function that takes a list of lists of numbers with
empty intersections and returns the same list as object of type Partition.

For each partition in Part, first of all the algorithm checks if it induces the trivial
neighbourly partition (lines 15–16)—in that case, it continues with the next element
of Part. Then it recovers the superpartition (line 17) and verifies the neighbourly

§5For an affine arrangement arr with n lines, the infinity line is always denoted by n+ 1.
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condition (lines 18–25). If the partition is neighbourly, the algorithm adds it to the
result (line 27).

The next algorithm computes the ideal associated with a partition partition.
Its input are the affine arrangement arr of n lines and a partition partition with
supp(partition) Ď [n+ 1].

1 def ideal_from_partition(partition,arr):

2 n=arr.n_hyperplanes()

3 Sing=sing_with_infinity(arr)

4 R=PolyRingQ(n)

5 S=PolyRingQ(n+1)

6 t=PolyRingVariables(S)

7 infty=prod([t[i] for i in xrange(1,n+2)],1)-1

8 ideal=[infty]

9 ground_set=sum(partition,Set([]))

10 for i in xrange(1,n+2):

11 if i not in ground_set:

12 ideal+=[t[i]-1]

13 Ssub=[[h for h in s if h in ground_set] for s in Sing]

14 Ssub=[s for s in Ssub if len(s)>=2]

15 for pt in Ssub:

16 sub=False

17 for p in partition:

18 if Set(pt).issubset(Set(p)):

19 sub=True

20 break

21 if sub:

22 continue

23 poly=1

24 for i in pt:

25 poly*=t[i]

26 ideal+=[poly-1]

27 tot_ideal=S.ideal(ideal)

28 return R.ideal(tot_ideal.elimination_ideal([t[n+1]]))

After the usual definitions (lines 2–6), the algorithm defines the polynomial infty =

t1 · · · tn+1 − 1 and places it among the generators of the ideal by default (lines 7–8);
then computes ground_set = supp(partition) (line 9). For every i /∈ supp(partition),
the polynomial ti − 1 is added to the generators of the ideal (lines 10–12; see also
Proposition 3.37).
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The algorithm computes now the singular points of the subarrangement defined
by ground_set (lines 13–14). For each of those, the algorithm checks if the point is
contained in a single block of partition: if that is the case, it continues with the
next singular point (lines 16–22). If a point passes this control, the corresponding
polynomial is added to the generators of the ideal (lines 23–26).

Finally, the algorithm computes the ideal in Q[t_1, . . . , t_{n+1}] and eliminates the
variable t_{n+1}, returning an ideal that can be analysed along with the ideals of the
characteristic variety of an affine arrangement.

4.5 Wiring Diagrams

One of the difficulties that one encounters while working with arrangements in
SageMath is that most functions do not work, or are not implemented, if the ar-
rangement is not defined in an exact field like Q. Real numbers are difficult for a
computer to deal with. Imagine the situation represented in Figure 4.1: if the lines
are approximations, a triple point could span three double points, destroying the
combinatorics of the arrangement.

Figure 4.1: Effects of the approximation of real lines.

A possible solution to this problem is to encode the information of an arrangement
in another structure which is more easily understandable for a computer. One of such
structures is that of wiring diagrams. It is easier to show how to build a wiring diagram
from an arrangement than to formally define what a wiring diagram is (see Figure 4.2
for reference).

Given an arrangement A = {`1, . . . , `n} in R2, pick a line (guiding line) L such that

• no point in Sing(A) belongs to L;

• the projection map Sing(A)→ L is injective, i.e. each line orthogonal to L contains
at most one point of Sing(A).
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guiding line

1

2

3

4

5

(2, 4) (1, 2) (4, 5) (2, 4)

Figure 4.2: Wiring diagram and sequence of Lefschetz pairs associated with the
arrangement aA3.

Then begin with n horizontal parallel wires, or strands, numbered 1, . . . , n from bottom
to top, and go through the guiding line. Every time you come across a projection of a
point in Sing(A), make the correspondent switch in the strands.

To a wiring diagram it is possible to associate a list of Lefschetz pairs, that is a list of
#(Sing(A)) pairs (i, j) with 1 6 i < j 6 n. Each pair is associated with an intersection
point P in the following way: number locally the wires before the point with 1, . . . , n
from bottom to top; the corresponding pair is made of the minimum and maximum
labels of the wires intersecting at P.
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Wiring diagrams are useful when dealing with pseudolines arrangements. We recall
briefly the definition, leaving the details to [4, Chapter 6].

Definition 4.1. A simple closed curve L embedded in P2(R) is a pseudoline if P2(R)r L
has one connected component.

Lemma 4.2. Let L1 and L2 be two pseudolines. Then L1 ∩ L2 6= ∅. Moreover, if L1 ∩ L2 is a
single point P, then L1 and L2 intersect transversally.

Definition 4.3. An arrangement of pseudolines is a finite collection of pseudolines A =

{L1, . . . , Ln} such that ∩A = ∅ and for every Li, Lj ∈ A with i 6= j we have Li ∩ Lj =
{one point}.

In order to define affine pseudolines and their arrangements, we have to be more
subtle. Consider P2(R) as the quotient of the closed 2-disk D2 by the equivalence
relation that identifies antipodal points on ∂D2, and consider the affine plane R2 as the
interior of D2.

Definition 4.4. An affine pseudoline is the image L = f((0, 1)) of a continuous injective
map f : [0, 1]→ D2 such that f−1(∂D2) = {0, 1}. An arrangement of affine pseudolines is a
finite collection of affine pseudolines A = {L1, . . . , Ln} such that

1. for all Li, Lj ∈ A with i 6= j we have #
(
Li ∩ Lj

)
6 1;

2. if #
(
Li ∩ Lj

)
= 1, the intersection is transversal;

3. the “pseudo-parallelism” relation

Li ‖ Lj ⇔ Li = Lj or Li ∩ Lj = ∅

is an equivalence relation;

4. for any Li, Lj ∈ A such that Li ∩ Lj = ∅ there exists Lk ∈ A such that Li ∩ Lk 6= ∅
and Lj ∩ Lk 6= ∅.

Obviously a line arrangement is also a pseudoline arrangement. However, the class
of pseudoline arrangements has something more.

Definition 4.5. An arrangement of pseudolines is stretchable if there is a self-home-
omorphism of the projective plane such that the image of each pseudoline of the
arrangement is a (straight) line.

There exist non-stretchable pseudoline arrangements, obtained for example by
violating theorems of Projective Geometry; in Figure 4.3 we see an example. This is not
possible for “small” arrangements.
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Figure 4.3: This arrangement of pseudolines is non-stretchable, because of Pappus’s
Theorem.

Theorem 4.6. All pseudoline arrangements with at most 8 lines are stretchable ([27]). All
simplicial pseudoline arrangements with at most 14 lines are stretchable, and there exist
non-stretchable simplicial pseudoline arrangements with 15 lines ([17]).

SageMath has a class called PseudolineArrangement, but its functionality is quite
limited. We decided to implement a class ourselves, whose instances are representations
of wiring diagrams.

1 class WiringDiagram():

2 def __init__(self,pairs,n_strands):

3 try:

4 maxindex=max(i for pair in pairs for i in pair)

5 minindex=min(i for pair in pairs for i in pair)

6 except ValueError:

7 maxindex=0

8 minindex=1

9 if maxindex>n_strands or minindex<=0:

10 raise ValueError("permutations out of range")

11 self._pairs=pairs

12 self._n_strands=n_strands

13

14 def __repr__(self):

15 desc="Wiring diagram on "

16 if self._n_strands==1:

17 desc+="1 strand "
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18 else:

19 desc+="{} strands ".format(self._n_strands)

20 if len(self._pairs)==1:

21 desc+="with 1 singularity"

22 else:

23 desc+="with {} singularities".format(len(self._pairs))

24 return desc

25

26 def n_strands(self):

27 return self._n_strands

28

29 def pairs(self):

30 return self._pairs

31

32 def end_configuration(self):

33 n=self._n_strands

34 conf=list(xrange(1,n+1))

35 for pair in self._pairs: # apply the corresponding permutation

36 p=make_inverting_perm(pair,n)

37 conf=p.action(conf)

38 return tuple(conf)

39

40 def singularities(self,upper_and_lower=False):

41 n=self._n_strands

42 conf=list(xrange(1,n+1))

43 res=[]

44 for pair in self._pairs: # extract the three lists...

45 minp=min(pair)

46 maxp=max(pair)

47 LP=conf[:minp-1]

48 SP=conf[minp-1:maxp]

49 UP=conf[maxp:]

50 res.append([SP,UP,LP])

51 p=make_inverting_perm(pair,n)

52 conf=p.action(conf) # ... then apply the permutation

53 if upper_and_lower:

54 return res

55 else:

56 return [s[0] for s in res]

57
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58 def remove_strands(self,strand_list):

59 wd=self

60 for s in sorted(strand_list,reverse=True): # from the top, so it is

not necessary relabeling↪→

61 Pairs=wd.pairs()

62 Sing=wd.singularities(upper_and_lower=True)

63 n=wd.n_strands()

64 res=[]

65 for j in xrange(len(Pairs)):

66 if s in Sing[j][2]: # i.e. s in L(P)

67 res+=[[Pairs[j][0]-1,Pairs[j][1]-1]] # shift below

68 elif s in Sing[j][1]: # i.e. s in U(P)

69 res+=[Pairs[j]] # leave as it is

70 else: # i.e. s in S(P)

71 temp=[Pairs[j][0],Pairs[j][1]-1]

72 if temp[0]!=temp[1]: # the pair does not die

73 res+=[temp]

74 wd=WiringDiagram(res,n-1)

75 return wd

A wiring diagram is defined by two objects: the list of Lefschetz pairs and the number
of strands; while initializing a WiringDiagram object, we check that these two data are
compatible.

We describe briefly the methods available to a WiringDiagram object.

n_strands() Return the number of strands.

pairs() Return the list of the Lefschetz pairs.

end_configuration() Return a tuple with the labels of the strands as they appear on
the right of the diagram, ordered from bottom to top. Notice that the strands
are always ordered (1, . . . , n) from bottom to top on the left. If wd represents a
pseudoline arrangement of n lines, wd.end_configuration() should be (n, . . . , 1).

singularities(upper_and_lower=False) Return the list of the singular points of the
diagram. Each point is represented by the list of the lines passing through it.
If upper_and_lower is true, each singularity P is represented by a list of three
elements [S(P), U(P), L(P)] where:

• S(P) is the list of the lines passing through P;

• U(P) is the list of the lines passing above P;

• L(P) is the list of the lines passing below P.
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In other words, suppose that P is represented by the Lefschetz pair [i, j] with
i < j. Then the strands configuration immediately before P can be written (read
from bottom to top) as [ L(P) | S(P) | U(P) ], where L(P) are the strands from the
1st to the (i − 1)-th, S(P) are the strands from the i-th to the j-th, and U(P) are
the strands from the (j+ 1)-th to the last.

remove_strands(strand_list) Return a WiringDiagram obtained by removing the
strands specified in strand_list.

In the code for WiringDiagram, the auxiliary function make_inverting_perms takes
as input a pair (i, j) and an integer n and returns the permutation(

1 · · · i− 1 i i+ 1 · · · j− 1 j j+ 1 · · · n
1 · · · i− 1 j j− 1 · · · i+ 1 i j+ 1 · · · n

)
.

Example 4.1. A realization of aR(10) as a wiring diagram is pictured in Figure 4.4.
Notice that R(10) is “essentially irrational”, that is to say, it is not isomorphic to any
arrangement in P2(Q) (see [29, p. 33 ff.]).
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Figure 4.4: A wiring diagram for aR(10). Each strand corresponds to the line with the
same number in Chapter 5, with line 10 sent to infinity.

All the algorithms of the previous sections have been adapted to work with wiring
diagrams. In order to avoid being repetitive, we won’t report the actual code here.

4.6 Some Remarks on the Algorithms of Sections 4.2 and 4.3

The task of both algorithms of Sections 4.2 and 4.3 is: given a (Laurent) polynomial
matrix M and a target rank k, compute the (primary decomposition of the radical of
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the) ideal generated by all k× k minors, which describes the set of points P such that
the rank of M evaluated at P is strictly less than k. The first algorithm computes one
minor at a time, with some tricks that speed up the computation, while the second one
computes directly the rank through a series of bifurcations.

While both algorithms can be used to compute characteristic varieties, the second
one appears to be far more efficient: in fact, the huge number of minors even for
relatively small matrices is what hinders the first algorithm, that becomes too slow for
arrangements with more than 10 lines. The second algorithm does not suffer from this
problem, but it uses Gröbner bases, and experiments show that due to this it begins to
struggle with arrangements with 14-15 lines.

Another problem comes from the intrinsic nature of the computer: it can deal only
with exact numbers, i.e. rational. Therefore at first we were limited to arrangements
whose lines admit equations with rational coefficients. Subsequently we adapted
our algorithms to wiring diagrams, which are semi-combinatorial descriptions of line
arrangements, so that we can now compute characteristic varieties for more general
arrangements, among which “essentially irrational” ones (see Theorem 2.25 of [29]).

Despite the fact that these algorithms were designed with a specific matrix in mind,
that is the ∂2 matrix of the algebraic complex defined by Salvetti and Settepanella [43]
and refined by Gaiffi and Salvetti [26] (see Section 2.3), they can be applied to any matrix
with polynomial coefficients, in particular to the Alexander matrix (Definition 3.5).
This allows us to deal not only with complexified real arrangements (for which the
above algebraic complex is defined), but also with complex arrangements, as long as
we are able to compute a presentation of the fundamental group of the complement.
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Chapter 5

Catalogue of Remarkable Projective
Line Arrangements

In this chapter we present a compendium of some projective line arrangements. Some
of them can be found in the literature and have been studied in deep (although their
names seem to change between different articles); some other appear in the literature,
but their characteristic varieties have not been computed as far as we know. Most of
the entries come from Grümbaum’s catalogue of simplicial arrangements [28].

The catalogue is sorted by increasing number of lines. In the pictures, an arc around
an arrangement means that the line at infinity belongs to the arrangement.

Below each arrangement there are the list of neighbourly partitions (NP), the
double points graph (DPG; see Definition 2.8), and the list of the components of the
characteristic variety (CV). The NP list includes partitions of subarrangements and it
is organized by type of the subarrangement; however, NP corresponding to singular
points are not reported here.

In the CV list, only equations for essential components are shown. Equations
for the other components can be derived from the corresponding components in the
subarrangements (see Proposition 3.30 and the subsequent discussion for translated
components).

You will notice that, if an arrangement has n lines, the equations displayed here
are (Laurent) polynomials in n− 1 variables. In fact, to save computation time, all the
characteristic varieties have been computed starting from the affine arrangement with
n − 1 lines obtained by sending the line n (i.e. the one with maximum index in the
pictures) to infinity. Equations for the actual components can be computed by adding
t1 · · · tn − 1 to the equations here (see Theorem 3.14).

69
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A3
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Alias(es): Braid [45], A(6, 1) [17, 28], R(6) [29], B6 [47], Q(2)
NP:

• (essential): {{1, 4}, {2, 5}, {3, 6}}

DPG:

4

1

5

2

6

3

CV:

• 4 local components (= 4 triple pts.)

• 1 essential 2-dimensional component:

t1 − t4, t2 − t5, t3t4t5 − 1
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NonFano

5
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1

27
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Alias(es): A(7, 1) [17, 28]
NP:

• A3: {{1, 4}, {2, 3}, {6, 7}}, {{1, 5}, {2, 6}, {3, 7}}, {{2, 7}, {3, 6}, {4, 5}}

• (essential): {{1, 4, 5}, {2}, {3}, {6}, {7}}

DPG:
1

4 5
2 3 6 7

CV:

• 6 local components (= 6 triple pts.)

• 3 components of type A3
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B3x
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Alias(es): A(8, 1) [17, 28], B3 deleted [26, 45, 48], D2 [7], Q(3), Cohen(2)
NP:

• A3: {{1, 4}, {2, 3}, {6, 8}}, {{1, 5}, {2, 6}, {3, 8}}, {{1, 6}, {2, 7}, {4, 8}}, {{1, 8}, {3, 7}, {4, 6}},
{{2, 8}, {3, 6}, {4, 5}}

• NonFano: {{1, 4, 5}, {2}, {3}, {6}, {8}}, {{1}, {2, 3, 7}, {4}, {6}, {8}}

DPG:

4

5

1

3

7

2

6 8

CV:

• 7 local components (= 6 triple pts. + 1 quadruple pt.)

• 5 components of type A3

• 1 essential 1-dimensional translated component:

t6 + 1, t2 − t3, t1 − t4, t5t7 − 1, t4t7 + t3,

t3t5 + t4, t24 − t5, t3t4 + 1, t23 − t7
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B3

9 1 2
3

4

5

6
7

8

5 8 1

4

6

2

9

7
3

4

8

9

3

1

6
2

5

7

Alias(es): A(9, 1) [17, 28]
NP:

• A3: {{1, 2}, {3, 7}, {4, 5}}, {{1, 4}, {2, 5}, {3, 9}}, {{1, 6}, {2, 8}, {3, 9}}, {{1, 5}, {2, 4}, {7, 9}},
{{1, 6}, {2, 7}, {4, 9}}, {{1, 7}, {2, 8}, {5, 9}}, {{1, 6}, {3, 7}, {4, 8}}, {{1, 9}, {4, 8}, {5, 7}},
{{2, 8}, {3, 7}, {5, 6}}, {{2, 9}, {4, 7}, {5, 6}}, {{3, 9}, {4, 8}, {5, 6}}

• NonFano: {{1}, {2}, {3, 7, 9}, {4}, {5}}, {{1, 5, 6}, {2}, {4}, {7}, {9}},
{{1}, {2, 4, 8}, {5}, {7}, {9}}

• (essential): {{1, 5, 6}, {2, 4, 8}, {3, 7, 9}}

DPG:

5

6

1

4

8

2

9

3

7

CV:

• 7 local components (= 4 triple pts. + 3 quadruple pts.)

• 11 components of type A3

• 1 essential 2-dimensional component:

t2 − t4, t1 − t5, t27 − t3, t25 − t6, t24 − t8, t6t7t8 − t4t5,

t5t7t8 − t4, t3t6t8 − 1, t3t5t8 − t4t7, t4t6t7 − t5,

t4t5t7 − 1, t3t4t6 − t5t7, t3t4t5 − t7
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Pappus

1 2
3

4

6

5

7

8

9

NP:

• (essential): {{1, 4, 7}, {2, 3, 8}, {5, 6, 9}}

DPG:
1

4 7

2

3 8

5

6 9
CV:

• 9 local components (= 9 triple pts.)

• 1 essential 2-dimensional component:

t5 − t6, t4 − t7, t3 − t8, t2 − t8, t1 − t7, t6t7t8 − 1
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NonPappus

1 2
3

4

5

6

7

8

9 6

5

9
1

4

3

2

8

7

Alias(es): Pappus§1 [24]
Note: This arrangement is not the “non-Pappus” arrangement of [45]. In fact, in [45]
both their “Pappus” and “non-Pappus” arrangements have the property that each
line passes through exactly three triple points, but “the difference in their position
is reflected in several invariants of the complement” ([45, p. 74]). For example, the
characteristic variety of their “non-Pappus” arrangement has no non-local components.
On the other hand, in our NonPappus arrangement there is a line (9 in the picture
above) that passes through four triple points.
NP:

• (essential): {{1, 4, 7}, {2, 3, 8}, {5, 6, 9}}, {{1, 4, 7}, {2, 3, 8}, {5}, {6}, {9}}

DPG:
1

4 7

2

3 8
5 6 9

CV:

• 10 local components (= 10 triple pts.)

• 1 essential 2-dimensional component:

t5 − t6, t4 − t7, t3 − t8, t2 − t8, t1 − t7, t6t7t8 − 1

§1In [24], this arrangement is called “Pappus” despite not having the property that each line passes
through exactly three triple points.
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R(10)

2

3

4

5

6

7

9

1
8

10

Alias(es): A(10, 1) [17, 28]
NP:

• A3: {{1, 5}, {2, 7}, {3, 10}}, {{1, 6}, {2, 8}, {4, 10}}, {{1, 8}, {2, 5}, {9, 10}},
{{1, 10}, {3, 8}, {4, 7}}, {{1, 6}, {3, 5}, {7, 9}}, {{1, 7}, {4, 5}, {8, 9}},
{{2, 10}, {3, 6}, {4, 5}}, {{2, 6}, {3, 8}, {5, 9}}, {{2, 7}, {4, 8}, {6, 9}},
{{3, 7}, {4, 6}, {9, 10}}

• (essential): {{1, 6}, {2, 7}, {3, 8}, {4, 5}, {9, 10}}

DPG:

6

1

7

2

8

3

5

4

10

9

CV:

• 11 local components (= 10 triple pts. + 1 5-tuple pt.)

• 10 components of type A3

• 4 essential 0-dimensional translated components:

t7 − t8, t6 − t8, t5 − t8, t4 − t9, t3 − t9, t2 − t9, t1 − t9,

t8t9 + t
2
9 + t8 + t9 + 1, t28 − t9, t39 − t8
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A(10, 2)

5

6

1

7

8

9

4

3

2
10

NP:

• A3: {{1, 4}, {2, 5}, {3, 7}}, {{1, 2}, {3, 9}, {4, 5}}, {{1, 10}, {2, 8}, {3, 7}}, {{1, 5}, {2, 4}, {7, 9}},
{{1, 10}, {2, 9}, {4, 7}}, {{1, 9}, {2, 8}, {5, 7}}, {{1, 6}, {3, 4}, {8, 9}}, {{1, 10}, {3, 9}, {4, 8}},
{{1, 7}, {4, 8}, {5, 9}}, {{2, 6}, {3, 5}, {9, 10}}, {{2, 8}, {3, 9}, {5, 10}}, {{2, 7}, {4, 9}, {5, 10}},
{{3, 6}, {4, 5}, {8, 10}}, {{3, 7}, {4, 8}, {5, 10}}, {{3, 8}, {4, 9}, {6, 10}}, {{3, 10}, {5, 9}, {6, 8}},
{{4, 10}, {5, 8}, {6, 7}}

• NonFano: {{1}, {2}, {3, 7, 9}, {4}, {5}}, {{1}, {2, 4, 8}, {5}, {7}, {9}},
{{1, 5, 10}, {2}, {4}, {7}, {9}}, {{1, 6, 10}, {3}, {4}, {8}, {9}}, {{2, 6, 8}, {3}, {5}, {9}, {10}},
{{3, 6, 7}, {4}, {5}, {8}, {10}}, {{3}, {4, 5, 9}, {6}, {8}, {10}}

• B3: {{1, 5, 10}, {2, 4, 8}, {3, 7, 9}}

DPG:

1
10

7
3

6

2

8

4 5 9

CV:

• 10 local components (= 7 triple pts. + 3 quadruple pts.)

• 17 components of type A3

• 1 component of type B3

• 3 translated components of type B3x

• 2 essential 0-dimensional translated components:

t8 − t9 − 1, t7 − t9, t6 + 1, t5 − t9, t4 − t9,

t3 − t9 − 1, t2 − t9, t1 − t9, t29 + t9 + 1
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A(10, 3)

1 2 3
4

5

6

7

8

9

10

NP:

• A3: {{1, 8}, {2, 7}, {3, 4}}, {{1, 5}, {2, 6}, {3, 9}}, {{1, 5}, {2, 4}, {7, 10}},
{{1, 2}, {4, 9}, {6, 7}}, {{1, 6}, {2, 7}, {4, 10}}, {{1, 7}, {2, 6}, {9, 10}}, {{1, 8}, {2, 9}, {6, 10}},
{{2, 5}, {3, 4}, {6, 10}}, {{2, 3}, {5, 8}, {6, 7}}, {{2, 6}, {3, 7}, {5, 10}}, {{2, 7}, {3, 6}, {8, 10}},
{{2, 8}, {3, 9}, {7, 10}}, {{2, 10}, {4, 7}, {5, 6}}, {{2, 10}, {4, 9}, {5, 8}}, {{2, 10}, {6, 9}, {7, 8}}

• NonFano: {{1, 5, 6}, {2}, {4}, {7}, {10}}, {{1}, {2}, {4, 9, 10}, {6}, {7}},
{{1, 7, 8}, {2}, {6}, {9}, {10}}, {{2}, {3, 4, 7}, {5}, {6}, {10}}, {{2}, {3}, {5, 8, 10}, {6}, {7}},
{{2}, {3, 6, 9}, {7}, {8}, {10}}

• NonPappus: {{1, 5, 8}, {3, 4, 9}, {6, 7, 10}}, {{1, 5, 8}, {3, 4, 9}, {6}, {7}, {10}}

• (essential): {{1, 5, 8}, {2, 6, 7, 10}, {3, 4, 9}}, {{1, 5, 8}, {2, 3, 4, 9}, {6, 7, 10}},
{{1, 2, 5, 8}, {3, 4, 9}, {6, 7, 10}}, {{1, 5, 8}, {2, 3, 4, 9}, {6}, {7}, {10}},
{{1, 2, 5, 8}, {3, 4, 9}, {6}, {7}, {10}}, {{1, 5, 8}, {2}, {3, 4, 9}, {6, 7, 10}},
{{1, 5, 8}, {2, 10}, {3, 4, 9}, {6}, {7}}, {{1, 5, 8}, {2, 7}, {3, 4, 9}, {6}, {10}},
{{1, 5, 8}, {2, 6}, {3, 4, 9}, {7}, {10}}, {{1, 5, 8}, {2}, {3, 4, 9}, {6}, {7}, {10}}

DPG:
1

5 8

3

4 9
2 6 7 10

CV:

• 10 local components (= 7 triple pts. + 3 quadruple pts.)

• 15 components of type A3

• 1 component of type NonPappus

• 6 translated components of type B3x
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Q(4)

1

9

2

7

4

3

8

5

6

10 4 2 9 7

5

3

8

6

10

1

NP:

• A3: {{1, 10}, {2, 9}, {3, 8}}, {{1, 10}, {4, 7}, {5, 6}}

• (essential): {{1, 10}, {2, 5, 6, 9}, {3, 4, 7, 8}}

DPG:

6

2 5

9 7

3 4

8 10

1

CV:

• 10 local components (= 8 triple pts. + 2 quadruple pts.)

• 2 components of type A3

• 1 essential translated 1-dimensional component:

t7 − t8, t6 − t9, t5 − t9, t4 − t8,

t3 − t8, t2 − t9, t1 + 1, t8t9 + 1
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A(11, 1)

7

8

6

1 32

9

10

5

411

NP:

• A3: {{1, 4}, {2, 6}, {3, 9}}, {{1, 9}, {2, 7}, {3, 4}}, {{1, 5}, {2, 7}, {3, 10}},
{{1, 10}, {2, 8}, {3, 5}}, {{1, 5}, {2, 4}, {10, 11}}, {{1, 9}, {2, 10}, {4, 11}},
{{1, 5}, {3, 4}, {7, 11}}, {{1, 3}, {4, 9}, {6, 7}}, {{1, 6}, {3, 7}, {4, 11}},
{{1, 3}, {5, 10}, {7, 8}}, {{1, 7}, {3, 8}, {5, 11}}, {{1, 7}, {3, 6}, {9, 11}},
{{1, 8}, {3, 7}, {10, 11}}, {{1, 9}, {3, 10}, {7, 11}}, {{1, 11}, {4, 8}, {5, 7}},
{{1, 7}, {5, 6}, {8, 9}}, {{1, 11}, {6, 10}, {7, 9}}, {{2, 5}, {3, 4}, {9, 11}},
{{2, 9}, {3, 10}, {5, 11}}, {{2, 7}, {4, 5}, {9, 10}}, {{2, 11}, {4, 10}, {5, 9}},
{{3, 11}, {4, 7}, {5, 6}}, {{3, 7}, {4, 8}, {6, 10}}, {{3, 11}, {7, 10}, {8, 9}},
{{4, 9}, {5, 10}, {7, 11}}

• NonFano: {{1}, {2, 6, 7}, {3}, {4}, {9}}, {{1}, {2, 7, 8}, {3}, {5}, {10}},
{{1, 5, 9}, {2}, {4}, {10}, {11}}, {{1, 5, 6}, {3}, {4}, {7}, {11}}, {{1}, {3, 4, 8}, {5}, {7}, {11}},
{{1}, {3}, {4, 9, 11}, {6}, {7}}, {{1}, {3}, {5, 10, 11}, {7}, {8}}, {{1}, {3, 6, 10}, {7}, {9}, {11}},
{{1, 8, 9}, {3}, {7}, {10}, {11}}, {{2}, {3, 4, 10}, {5}, {9}, {11}}, {{2, 7, 11}, {4}, {5}, {9}, {10}}

• B3: {{1, 5, 9}, {2, 7, 11}, {3, 4, 10}}

• NonPappus: {{1, 3, 11}, {4, 8, 9}, {5, 6, 10}}, {{1}, {3}, {4, 8, 9}, {5, 6, 10}, {11}}

• A(10, 3): {{1, 3, 11}, {4, 8, 9}, {5, 6, 7, 10}}, {{1, 3, 11}, {4, 7, 8, 9}, {5, 6, 10}},
{{1, 3, 7, 11}, {4, 8, 9}, {5, 6, 10}}, {{1}, {3}, {4, 8, 9}, {5, 6, 7, 10}, {11}},
{{1}, {3}, {4, 7, 8, 9}, {5, 6, 10}, {11}}, {{1, 3, 11}, {4, 8, 9}, {5, 6, 10}, {7}},
{{1}, {3}, {4, 8, 9}, {5, 6, 10}, {7, 11}}, {{1}, {3, 7}, {4, 8, 9}, {5, 6, 10}, {11}},
{{1, 7}, {3}, {4, 8, 9}, {5, 6, 10}, {11}}, {{1}, {3}, {4, 8, 9}, {5, 6, 10}, {7}, {11}}
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DPG:

7

2

10

6

5

9

8

4

1 3 11

CV:

• 12 local components (= 8 triple pts. + 4 quadruple pts.)

• 25 components of type A3

• 1 component of type B3

• 1 component of type NonPappus

• 8 translated components of type B3x

• 4 translated components of type A(10, 2)

• 2 essential 0-dimensional translated components:

t9 − t10, t8 + 1, t7 − t10 + 1, t6 + 1, t5 − t10, t4 − t10,

t3 − t10 + 1, t2 + t10, t1 − t10 + 1, t210 − t10 + 1
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R(12)

12

10

9

8

7

6

3

4

5

2

1

11

NP:

• A3: {{1, 4}, {2, 3}, {8, 12}}, {{1, 6}, {2, 8}, {3, 12}}, {{1, 8}, {2, 10}, {4, 12}},
{{1, 7}, {2, 9}, {5, 12}}, {{1, 10}, {2, 6}, {11, 12}}, {{1, 12}, {3, 10}, {4, 8}},
{{1, 10}, {3, 9}, {5, 8}}, {{1, 7}, {3, 6}, {8, 11}}, {{1, 6}, {4, 9}, {5, 10}},
{{1, 4}, {5, 11}, {6, 9}}, {{1, 9}, {4, 6}, {10, 11}}, {{1, 8}, {5, 6}, {9, 11}},
{{2, 12}, {3, 8}, {4, 6}}, {{2, 10}, {3, 7}, {5, 6}}, {{2, 3}, {5, 11}, {7, 10}},
{{2, 7}, {3, 10}, {6, 11}}, {{2, 6}, {4, 7}, {5, 8}}, {{2, 9}, {4, 10}, {8, 11}},
{{2, 8}, {5, 10}, {7, 11}}, {{3, 6}, {4, 10}, {5, 12}}, {{3, 9}, {4, 7}, {11, 12}},
{{3, 8}, {5, 7}, {10, 11}}, {{4, 8}, {5, 9}, {6, 11}}

• NonFano: {{1, 4, 6}, {2}, {3}, {8}, {12}}, {{1}, {2, 3, 10}, {4}, {8}, {12}},
{{1, 4, 8}, {5}, {6}, {9}, {11}}, {{1}, {4}, {5, 10, 11}, {6}, {9}},
{{2}, {3}, {5, 6, 11}, {7}, {10}}, {{2, 3, 8}, {5}, {7}, {10}, {11}}

• NonPappus: {{1, 2, 5}, {3, 4, 11}, {6, 8, 10}}, {{1, 2, 5}, {3, 4, 11}, {6}, {8}, {10}}

• (essential): {{1, 4, 7, 10}, {2, 3, 6, 9}, {5, 8, 11, 12}}

DPG:

4

7

1

3

9

2

11

12

5

6 8 10
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CV:

• 16 local components (= 15 triple pts. + 1 6-tuple pt.)

• 23 components of type A3

• 1 component of type NonPappus

• 3 translated components of type B3x

• 1 essential 2-dimensional component:

t8 − t11, t7 − t10, t6 − t9, t5 − t11, t4 − t10,

t3 − t9, t2 − t9, t1 − t10, t9t10t11 − 1

• 2 essential 0-dimensional translated components:

t10 + t11, t9 + t11, t8 + t11, t7 + t11, t6 + t11, t5 − t11, t4 − t11,

t3 − t11, t2 − t11, t1 − t11, t211 − t11 + 1
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A(12, 2)

8

9

7

2 31 4

10

11

6

512

NP:

• A3: {{1, 5}, {2, 7}, {3, 11}}, {{1, 11}, {2, 9}, {3, 5}}, {{1, 6}, {2, 5}, {9, 12}},
{{1, 8}, {2, 9}, {5, 12}}, {{1, 8}, {2, 7}, {11, 12}}, {{1, 10}, {2, 11}, {7, 12}},
{{1, 3}, {5, 11}, {7, 9}}, {{1, 7}, {3, 9}, {5, 12}}, {{1, 9}, {3, 7}, {11, 12}},
{{1, 8}, {5, 7}, {9, 11}}, {{2, 6}, {3, 7}, {4, 10}}, {{2, 10}, {3, 9}, {4, 6}},
{{2, 6}, {3, 5}, {8, 12}}, {{2, 3}, {5, 10}, {7, 8}}, {{2, 7}, {3, 8}, {5, 12}},
{{2, 3}, {6, 11}, {8, 9}}, {{2, 8}, {3, 9}, {6, 12}}, {{2, 8}, {3, 7}, {10, 12}},
{{2, 9}, {3, 8}, {11, 12}}, {{2, 10}, {3, 11}, {8, 12}}, {{2, 4}, {6, 10}, {7, 9}},
{{2, 7}, {4, 9}, {6, 12}}, {{2, 9}, {4, 7}, {10, 12}}, {{2, 12}, {5, 9}, {6, 8}},
{{2, 8}, {6, 7}, {9, 10}}, {{2, 12}, {7, 11}, {8, 10}}, {{3, 6}, {4, 5}, {7, 12}},
{{3, 7}, {4, 8}, {6, 12}}, {{3, 9}, {4, 8}, {10, 12}}, {{3, 10}, {4, 11}, {9, 12}},
{{3, 12}, {5, 8}, {6, 7}}, {{3, 8}, {5, 9}, {7, 11}}, {{3, 12}, {8, 11}, {9, 10}},
{{4, 8}, {6, 9}, {7, 10}}, {{5, 10}, {6, 11}, {8, 12}}

• NonFano: {{1}, {2, 7, 9}, {3}, {5}, {11}}, {{1, 6, 8}, {2}, {5}, {9}, {12}},
{{1, 8, 10}, {2}, {7}, {11}, {12}}, {{1, 3, 8}, {5}, {7}, {9}, {11}},
{{1}, {3}, {5, 11, 12}, {7}, {9}}, {{2}, {3, 7, 9}, {4}, {6}, {10}},
{{2, 6, 7}, {3}, {5}, {8}, {12}}, {{2}, {3, 5, 9}, {6}, {8}, {12}},
{{2}, {3}, {5, 10, 12}, {7}, {8}}, {{2}, {3}, {6, 11, 12}, {8}, {9}},
{{2}, {3, 7, 11}, {8}, {10}, {12}}, {{2, 9, 10}, {3}, {8}, {11}, {12}},
{{2, 4, 8}, {6}, {7}, {9}, {10}}, {{2}, {4}, {6, 10, 12}, {7}, {9}},
{{3}, {4, 5, 8}, {6}, {7}, {12}}, {{3}, {4, 8, 11}, {9}, {10}, {12}}

• B3: {{1, 3, 8}, {2, 7, 9}, {5, 11, 12}}, {{2, 4, 8}, {3, 7, 9}, {6, 10, 12}}
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• NonPappus: {{2, 3, 12}, {5, 9, 10}, {6, 7, 11}}, {{2}, {3}, {5, 9, 10}, {6, 7, 11}, {12}}

• A(10, 3): {{2, 3, 12}, {5, 9, 10}, {6, 7, 8, 11}}, {{2, 3, 12}, {5, 8, 9, 10}, {6, 7, 11}},
{{2, 3, 8, 12}, {5, 9, 10}, {6, 7, 11}}, {{2}, {3}, {5, 9, 10}, {6, 7, 8, 11}, {12}},
{{2}, {3}, {5, 8, 9, 10}, {6, 7, 11}, {12}}, {{2, 3, 12}, {5, 9, 10}, {6, 7, 11}, {8}},
{{2}, {3}, {5, 9, 10}, {6, 7, 11}, {8, 12}}, {{2}, {3, 8}, {5, 9, 10}, {6, 7, 11}, {12}},
{{2, 8}, {3}, {5, 9, 10}, {6, 7, 11}, {12}}, {{2}, {3}, {5, 9, 10}, {6, 7, 11}, {8}, {12}}

DPG: 8

1

10

5

4

11

6

2 3 7 9 12

CV:

• 14 local components (= 10 triple pts. + 3 quadruple pts. + 1 5-tuple pt.)

• 35 components of type A3

• 2 components of type B3

• 1 component of type NonPappus

• 10 translated components of type B3x

• 8 translated components of type A(10, 2)

• 4 translated components of type A(11, 1)

• 2 essential 0-dimensional translated components:

t10 − t11, t9 + 1, t8 − t11 + 1, t7 + 1, t6 − t11, t5 − t11,

t4 − t11 + 1, t3 − t11 + 1, t2 − t11 + 1, t1 − t11 + 1, t211 − t11 + 1
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A(12, 3)

1 2 3
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7

9

2

4
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8

5
3
6
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NP:

• A3: {{1, 10}, {2, 8}, {3, 4}}, {{1, 5}, {2, 6}, {3, 11}}, {{1, 10}, {2, 9}, {3, 6}},
{{1, 8}, {2, 9}, {3, 11}}, {{1, 5}, {2, 4}, {8, 12}}, {{1, 2}, {4, 11}, {6, 8}},
{{1, 6}, {2, 8}, {4, 12}}, {{1, 7}, {2, 6}, {9, 12}}, {{1, 8}, {2, 6}, {11, 12}},
{{1, 10}, {2, 11}, {6, 12}}, {{1, 8}, {3, 6}, {9, 12}}, {{1, 10}, {3, 11}, {9, 12}},
{{1, 7}, {4, 6}, {8, 11}}, {{1, 10}, {4, 9}, {6, 8}}, {{2, 5}, {3, 4}, {6, 12}},
{{2, 3}, {5, 10}, {6, 8}}, {{2, 6}, {3, 8}, {5, 12}}, {{2, 8}, {3, 6}, {10, 12}},
{{2, 8}, {3, 7}, {9, 12}}, {{2, 10}, {3, 11}, {8, 12}}, {{2, 12}, {4, 8}, {5, 6}},
{{2, 7}, {4, 5}, {10, 11}}, {{2, 12}, {4, 11}, {5, 10}}, {{2, 7}, {4, 8}, {6, 11}},
{{2, 11}, {4, 9}, {6, 7}}, {{2, 7}, {5, 6}, {8, 10}}, {{2, 10}, {5, 9}, {7, 8}},
{{2, 8}, {6, 9}, {7, 10}}, {{2, 6}, {7, 11}, {8, 9}}, {{2, 9}, {6, 8}, {10, 11}},
{{2, 12}, {6, 11}, {8, 10}}, {{3, 7}, {5, 8}, {6, 10}}, {{3, 11}, {5, 9}, {6, 8}},
{{4, 7}, {5, 6}, {10, 12}}, {{4, 8}, {5, 7}, {11, 12}}, {{4, 10}, {5, 11}, {7, 12}},
{{4, 12}, {6, 11}, {7, 10}}, {{5, 12}, {7, 11}, {8, 10}}, {{6, 10}, {8, 11}, {9, 12}}

• NonFano: {{1, 5, 6}, {2}, {4}, {8}, {12}}, {{1, 2, 7}, {4}, {6}, {8}, {11}},
{{1}, {2}, {4, 11, 12}, {6}, {8}}, {{1, 8, 10}, {2}, {6}, {11}, {12}},
{{2}, {3, 4, 8}, {5}, {6}, {12}}, {{2, 3, 7}, {5}, {6}, {8}, {10}},
{{2}, {3}, {5, 10, 12}, {6}, {8}}, {{2}, {3, 6, 11}, {8}, {10}, {12}},
{{2, 7, 12}, {4}, {5}, {10}, {11}}, {{2}, {4, 8, 9}, {6}, {7}, {11}},
{{2}, {5, 6, 9}, {7}, {8}, {10}}, {{2}, {6}, {7, 10, 11}, {8}, {9}},
{{2, 9, 12}, {6}, {8}, {10}, {11}}, {{4}, {5, 6, 11}, {7}, {10}, {12}},
{{4, 8, 10}, {5}, {7}, {11}, {12}}
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• B3; {{1, 8, 10}, {2, 9, 12}, {3, 6, 11}}, {{2, 7, 12}, {4, 8, 10}, {5, 6, 11}}

• NonPappus: {{1, 7, 10}, {2, 8, 11}, {4, 9, 12}}, {{1, 7, 10}, {2}, {4, 9, 12}, {8}, {11}},
{{1, 5, 10}, {3, 4, 11}, {6, 8, 12}}, {{1, 5, 10}, {3, 4, 11}, {6}, {8}, {12}},
{{2, 6, 10}, {3, 7, 11}, {5, 9, 12}}, {{2}, {3, 7, 11}, {5, 9, 12}, {6}, {10}}

• A(10, 3): {{1, 5, 10}, {2, 6, 8, 12}, {3, 4, 11}}, {{1, 5, 10}, {2, 3, 4, 11}, {6, 8, 12}},
{{1, 2, 5, 10}, {3, 4, 11}, {6, 8, 12}}, {{1, 5, 10}, {2}, {3, 4, 11}, {6, 8, 12}},
{{1, 5, 10}, {2, 3, 4, 11}, {6}, {8}, {12}}, {{1, 5, 10}, {2, 12}, {3, 4, 11}, {6}, {8}},
{{1, 5, 10}, {2, 8}, {3, 4, 11}, {6}, {12}}, {{1, 5, 10}, {2, 6}, {3, 4, 11}, {8}, {12}},
{{1, 2, 5, 10}, {3, 4, 11}, {6}, {8}, {12}}, {{1, 5, 10}, {2}, {3, 4, 11}, {6}, {8}, {12}},
{{1, 7, 10}, {2, 6, 8, 11}, {4, 9, 12}}, {{1, 7, 10}, {2, 8, 11}, {4, 6, 9, 12}},
{{1, 6, 7, 10}, {2, 8, 11}, {4, 9, 12}}, {{1, 7, 10}, {2, 8, 11}, {4, 9, 12}, {6}},
{{1, 7, 10}, {2, 6}, {4, 9, 12}, {8}, {11}}, {{1, 7, 10}, {2}, {4, 6, 9, 12}, {8}, {11}},
{{1, 7, 10}, {2}, {4, 9, 12}, {6, 8}, {11}}, {{1, 7, 10}, {2}, {4, 9, 12}, {6, 11}, {8}},
{{1, 6, 7, 10}, {2}, {4, 9, 12}, {8}, {11}}, {{1, 7, 10}, {2}, {4, 9, 12}, {6}, {8}, {11}},
{{2, 6, 8, 10}, {3, 7, 11}, {5, 9, 12}}, {{2, 6, 10}, {3, 7, 8, 11}, {5, 9, 12}},
{{2, 6, 10}, {3, 7, 11}, {5, 8, 9, 12}}, {{2, 6, 10}, {3, 7, 11}, {5, 9, 12}, {8}},
{{2, 8}, {3, 7, 11}, {5, 9, 12}, {6}, {10}}, {{2}, {3, 7, 11}, {5, 9, 12}, {6, 8}, {10}},
{{2}, {3, 7, 11}, {5, 9, 12}, {6}, {8, 10}}, {{2}, {3, 7, 8, 11}, {5, 9, 12}, {6}, {10}},
{{2}, {3, 7, 11}, {5, 8, 9, 12}, {6}, {10}}, {{2}, {3, 7, 11}, {5, 9, 12}, {6}, {8}, {10}}

DPG:

12

11 10

5
9

4

3
7

1
2 6 8

CV:

• 13 local components (= 7 triple pts. + 6 quadruple pts.)

• 39 components of type A3

• 2 components of type B3

• 3 components of type NonPappus

• 12 translated components of type B3x

• 6 translated components of type A(10, 2)

• 6 translated components of type A(11, 1)
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R(14)

14

11

10

9

8

7

6

2

1

13

12

4

5

3

Alias(es): A(14, 1) [17, 28]
NP:

• A3: {{1, 6}, {2, 9}, {3, 14}}, {{1, 8}, {2, 11}, {4, 14}}, {{1, 7}, {2, 10}, {5, 14}},
{{1, 10}, {2, 6}, {12, 14}}, {{1, 11}, {2, 7}, {13, 14}}, {{1, 14}, {3, 11}, {4, 9}},
{{1, 11}, {3, 10}, {5, 9}}, {{1, 7}, {3, 6}, {9, 12}}, {{1, 8}, {3, 7}, {9, 13}},
{{1, 6}, {4, 10}, {5, 11}}, {{1, 9}, {4, 6}, {11, 12}}, {{1, 10}, {4, 7}, {11, 13}},
{{1, 8}, {5, 6}, {10, 12}}, {{1, 9}, {5, 7}, {10, 13}}, {{1, 14}, {6, 13}, {7, 12}},
{{2, 14}, {3, 8}, {4, 6}}, {{2, 11}, {3, 7}, {5, 6}}, {{2, 7}, {3, 10}, {6, 12}},
{{2, 8}, {3, 11}, {6, 13}}, {{2, 6}, {4, 7}, {5, 8}}, {{2, 9}, {4, 10}, {8, 12}},
{{2, 10}, {4, 11}, {8, 13}}, {{2, 8}, {5, 10}, {7, 12}}, {{2, 9}, {5, 11}, {7, 13}},
{{2, 14}, {10, 13}, {11, 12}}, {{3, 6}, {4, 11}, {5, 14}}, {{3, 9}, {4, 7}, {12, 14}},
{{3, 10}, {4, 8}, {13, 14}}, {{3, 8}, {5, 7}, {11, 12}}, {{3, 9}, {5, 8}, {11, 13}},
{{3, 14}, {7, 13}, {8, 12}}, {{4, 8}, {5, 9}, {6, 12}}, {{4, 9}, {5, 10}, {6, 13}},
{{4, 14}, {9, 13}, {10, 12}}, {{5, 14}, {8, 13}, {9, 12}}

• (essential): {{1, 8}, {2, 9}, {3, 10}, {4, 7}, {5, 14}, {6, 13}, {11, 12}}
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DPG:

8

1

9

2

10

3

7

4

14

5

13

6

12

11

CV:

• 22 local components (= 21 triple pts. + 1 7-tuple pt.)

• 35 components of type A3

• 6 essential 0-dimensional translated components:

t12 − t13, t10 − t11, t9 − t11, t8 − t11, t7 − t11, t6 − t11,

t5 − t13, t4 − t13, t3 − t13, t2 − t13, t1 − t13, t313 − t
2
11,

t11t
2
13 − 1, t211t13 + t

2
11 + t11t13 + t

2
13 + t11 + t13 + 1, t311 − t13
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Chapter 6

Toric Arrangements

In this chapter we depart a little from hyperplane arrangements and catch a glimpse
of the theory of toric arrangements. We have encountered the algebraic torus (C∗)n

in Chapter 3, as it is the object where the characteristic variety of a hyperplane
arrangement lives. Now we change our point of view: we consider the torus as the
ambient space, in which the analogues of hyperplane arrangements are the so-called
toric arrangements.

Also in this case we are interested in studying the complement M(A) of a toric
arrangement A. In particular, one of the research fields of this theory deals with
the construction of wonderful models for M(A), that are smooth algebraic varieties in
which M(A) embeds “nicely” (see Definition 6.13). De Concini and Gaiffi [12] recently
outlined a method to obtain a projective wonderful model that requires the computation
of a toric variety XA. The crucial point in this construction is provided by an algorithm
that subdivides a given fan in a suitable way. Here we provide two algorithms that do
so: the first one is an implementation of the algorithm described in [12], written in the
SageMath language, and the second is an algorithm specific for the 2-dimensional case
that seems to be more natural.

6.1 Toric Varieties and Toric Arrangements

We recall here some standard theory about toric varieties, mainly following [16]. This
section is not intended to be a complete review of this vast theory: we just want to
report here some definitions, in order to keep this work as self-contained as possible.

Definition 6.1. A (complex algebraic) torus is an affine variety T isomorphic to (C∗)n; it
inherits the group structure through this isomorphism.

Definition 6.2. A character of a torus T is a group homomorphism χ : T → C∗ that is a
morphism of algebraic varieties; the set of all characters forms a group X∗(T) under

91
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point-wise multiplication. This group is a lattice of rank n.

Definition 6.3. A one-parameter subgroup of a torus T is a group homomorphism
λ : C∗ → T that is a morphism of algebraic varieties; the set of all one-parameter
subgroups forms a group X∗(T) under point-wise multiplication. This group is a lattice
of rank n.

There is a natural Z-bilinear pairing

<·, ·> : X∗(T)× X∗(T)→ Z

defined in the following way: for χ ∈ X∗(T) and λ ∈ X∗(T), the composition χ◦λ : C∗ →
C∗ is a character of the 1-dimensional torus C∗, therefore it is of the form t 7→ tk for
some k ∈ Z. Define <χ, λ> := k. This pairing allows us to identify

X∗(T) ' HomZ(X
∗(T),Z) and X∗(T) ' HomZ(X∗(T),Z).

Moreover we define the two vector spaces

V := HomZ(X
∗(T),R) = X∗(T)⊗

Z
R and VC := HomZ(X

∗(T),C) = X∗(T)⊗
Z
C;

recall that there is an isomorphism X∗(T) ⊗
Z
C∗ ' T given by λ ⊗ z 7→ λ(z), therefore

the map
X∗(T)⊗

Z
C −→ X∗(T)⊗

Z
C∗

λ⊗ z 7−→ λ⊗ e2πiz

induces a natural identification of T with VC
/
X∗(T).

If we fix an isomorphism T ' (C∗)n, we can work in concrete terms: the groups
X∗(T) and X∗(T) are both identified with Zn, where

• an element m = (a1, . . . , an) ∈ Zn defines the character

χm : (C∗)n −→ C∗

(t1, . . . , tn) 7−→ ta11 · · · t
an
n ;

• an element u = (b1, . . . , bn) ∈ Zn defines the one-parameter subgroup

λu : C∗ −→ (C∗)n

t 7−→ (tb1 , . . . , tbn);

moreover the pairing becomes

<·, ·> : Zn × Zn −→ Z

(m,u) 7−→
n∑
i=1

aibi.
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Definition 6.4. A toric variety is an irreducible variety X that contains an algebraic
torus T as a Zariski open subset, and such that the action of T on itself extends to an
algebraic action of T on X. (That means that the action map T × X→ X is a morphism
of algebraic varieties.)

If T is an algebraic complex torus, we say that X is a T-variety if we want to stress
that X contains T as an open subset.

We recall now the main definitions regarding polyhedral cones and fans, and how
they relate to toric varieties.

Definition 6.5. Let V = X∗(T)⊗
Z
R ' Rn as before. A (convex polyhedral) cone in V is a

set of the form

C = C(r1, . . . , rm) :=


m∑
j=1

αjrj

∣∣∣∣∣∣ α1 > 0, . . . , αm > 0

 Ď V
where r1, . . . , rm ∈ V . We say that C is generated by r1, . . . , rm. The cone C(r1, . . . , rm)

is rational if r1, . . . , rm ∈ X∗(T) ' Zn.

Let V_ be the dual space of V (which is isomorphic to X∗(T)⊗
Z
R). Recall that the

pairing <·, ·> extends to

<·, ·>R : V_ × V −→ R

(χ⊗ α, λ⊗ β) 7−→ <χ, λ>αβ

(we will drop the R subscript henceforth).

Definition 6.6. Given a cone C Ď V , its dual cone is defined by

C_ := {f ∈ V_ | <f, r> > 0 for all r ∈ C} Ď V_.

Definition 6.7. For f ∈ V_, f 6= 0, let Hf := {r ∈ V | <f, r> = 0} Ď V . A face of a cone
C Ď V is a set of the form Hf ∩ C for some f ∈ C_.

It is easy to prove that a face of a cone C is a polyhedral cone itself, that the
intersection of two faces of C is again a face of C, and that a face of a face of C is again
a face of C.

Definition 6.8. A fan ∆ of V is a finite set of rational polyhedral cones in V such that

1. {0} is a face of every C ∈ ∆;

2. if D is a face of C ∈ ∆, then D ∈ ∆;

3. for every C1, C2 ∈ ∆, C1 ∩ C2 is a face of each (hence it belongs to ∆).
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A ray of a fan ∆ is a 1-dimensional cone r ∈ ∆. We will sometimes use the term “ray”
also to denote a generator of r, instead of the whole cone.

It is possible to associate a toric variety X∆ with a fan ∆. In this construction each
maximal cone C ∈ ∆ describes a chart of X∆. An explicit description of it would require
a long digression, which is beyond the scope of this work; the interested reader can
find it in [16, Sections 1.2 and 3.1]. We recall only some properties of X∆ that can be
inferred from the fan ∆.

Definition 6.9. A rational polyhedral cone C = C(r1, . . . , rm) Ď V is smooth if
(r1, . . . , rm) forms a part of a Z-basis of X∗(T). A fan ∆ is smooth if every cone
C ∈ ∆ is smooth. A fan ∆ is complete if⋃

C∈∆
C = V.

Proposition 6.10. X∆ is a smooth variety if and only if ∆ is a smooth fan. X∆ is compact (in
the classical topology) if and only if ∆ is a complete fan.

Now that we listed the main basic definitions and properties of toric varieties, we
get back to the torus itself, and define the analogue of a hyperplane arrangement in
the torus version.

Definition 6.11. Let Γ be a split direct summand of X∗(T), and let ϕ : Γ → C∗ be a
homomorphism. A layer in T is the subvariety

K(Γ,ϕ) := {t ∈ T | χ(t) = ϕ(χ) for all χ ∈ Γ }

Definition 6.12. A toric arrangement A is a finite set of layers {K1, . . . ,Km} in T. A toric
arrangement is called divisorial if codim(K) = 1 for all K ∈ A.

As we stated in the introduction to this chapter, in [12] it is shown how to build
projective wonderful models for the complement

M(A) := T r
⋃

K∈A
K.

Definition 6.13. A projective wonderful model YA for M(A) is a smooth projective variety
containing M(A) as a dense open set and such that the complement YA rM(A) is a
divisor with normal crossings and smooth irreducible components.

Let A = {K1, . . . ,Kr} be a toric arrangement in the n-dimensional torus T, where
Ki = K(Γi, ϕi) with Γi split direct summands of X∗(T) and ϕi : Γi → C∗ homomor-
phisms, and let V = X∗(T) ⊗

Z
R as before. Notice that a layer K(Γ,ϕ) is a coset with

respect to the torus
H =

⋂
χ∈Γ

ker(χ) Ď T.
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Definition 6.14. Let ∆ be a fan in V . A character χ ∈ X∗(T) has the equal sign property
with respect to ∆ if, for every cone C ∈ ∆, either <χ, c> > 0 for all c ∈ C or <χ, c> 6 0
for all c ∈ C.

Definition 6.15. Let ∆ be a fan in V and let K(Γ,ϕ) be a layer. A Z-basis (χ1, . . . , χm)

for Γ is an equal sign basis with respect to ∆ if χi has the equal sign property for all
i = 1, . . . ,m.

In [12, Proposition 6.1] it was shown how to construct, starting from a toric arrange-
ment A = {K1, . . . ,Kr}, a projective smooth T-variety XA := X∆(A) such that for every
layer Ki = K(Γi, ϕi) in A there is an equal sign basis (χi,1, . . . , χi,si) of Γi with respect
to the fan ∆(A). Given such a ∆(A), we will say that XA is a good toric variety for A. In
the next section we describe the details of the algorithm that produces the fan ∆(A).

The behaviour of the layers in this variety XA has been described in [12]. In fact,
consider the closure K(Γ,ϕ) of a layer in XA. It turns out that this closure is a toric
variety itself, whose explicit description is provided by the following result.

Theorem 6.16 ([12, Proposition 3.1 and Theorem 3.1]). For every layer K(Γ,ϕ) let H be
the corresponding subtorus and let VΓ := {v ∈ V | <χ, v> = 0 for all χ ∈ Γ }.

1. For every cone C ∈ ∆(A), its relative interior is either entirely contained in VΓ or disjoint
from VΓ .

2. The collection of cones C ∈ ∆(A) which are contained in VΓ is a smooth fan ∆(A)H.

3. K(Γ,ϕ) is a smooth H-variety whose fan is ∆(A)H.

4. Let O be an orbit of T in XA and let CO ∈ ∆(A) be the corresponding cone. Then

(a) if CO is not contained in VΓ , O ∩K(Γ,ϕ) = ∅;

(b) If CO Ă VΓ , O ∩ K(Γ,ϕ) is the orbit of H in K(Γ,ϕ) corresponding to CO ∈
∆(A)H.

Once we have the toric variety XA, the next step is to build the wonderful model.
Let Q ′ be the set

Q ′ := {K | K ∈ A}

and let
Q := Q ′ ∪ {D | D is an irreducible component of XA r T}.

As a consequence of Theorem 6.16, the family L of all the connected components of
intersections of elements of Q gives an arrangement of subvarieties in the sense of Li’s
paper [32].
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Definition 6.17. Let X be a non-singular variety. A simple arrangement of subvarieties of
X is a finite set Λ of non-singular closed connected subvarieties properly contained in
X such that

1. For every two Λi, Λj ∈ Λ, either Λi ∩Λj ∈ Λ or Λi ∩Λj = ∅;

2. If Λi ∩ Λj 6= ∅, the intersection is clean, i.e. it is non-singular and for every
y ∈ Λi ∩Λj we have the following conditions on the tangent spaces:

Ty(Λi ∩Λj) = Ty(Λi) ∩ Ty(Λj).

Definition 6.18. Let X be a non-singular variety. An arrangement of subvarieties of X is a
finite set Λ of non-singular closed connected subvarieties properly contained in X such
that

1. For every two Λi, Λj ∈ Λ, either Λi ∩Λj is a disjoint union of elements of Λ or
Λi ∩Λj = ∅;

2. If Λi ∩Λj 6= ∅, the intersection is clean.

Notice that also the family L ′ of all the connected components of intersections of
elements of Q ′ is an arrangement of subvarieties, because it is contained in L and it is
closed under intersection. This allows, by a series of blow-ups, to build a projective
wonderful model associated with A.

6.2 Building the Fan

With the same notation as the one in the previous section, for each layer Ki = K(Γi, ϕi)

of A, let (χi,1, . . . , χi,si) be a basis for Γi. We want to build a fan ∆(A) such that each
(χi,1, . . . , χi,si) is an equal sign basis. To do so, we apply the following algorithm for
all vectors in the set

Ξ :=
⋃

Ki∈A
{χi,1, . . . , χi,si}. (6.1)

1 def dcg_one_step(fan,vect):

2 tempfan=copy(fan)

3 while True: # the algorithm eventually stops anyway

4 twocones=tempfan(2)

5 bad=[]

6 for cone in twocones:

7 v1=vector(tuple(cone.ray(0)))

8 v2=vector(tuple(cone.ray(1)))
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9 if vect.dot_product(v1)*vect.dot_product(v2)<0:

10 bad+=[cone]

11 if bad==[]:

12 return tempfan

13 else:

14 badlist=[]

15 for b in bad:

16 v1=vector(tuple(b.ray(0)))

17 v2=vector(tuple(b.ray(1)))

18 val1=vect.dot_product(v1)

19 val2=vect.dot_product(v2)

20 if abs(val1)==abs(val2):

21 badlist+=[(b,abs(val1),1)]

22 else:

23 badlist+=[(b,max(abs(val1),abs(val2)),0)]

24 c=sorted(badlist,key=lambda m:(m[1],m[2]))[-1][0]

25 newcones=[]

26 for conelist in tempfan.cones():

27 for cone in conelist:

28 if c.is_face_of(cone):

29 oldrays=list(Set(cone.rays()).difference(Set(c.rays())))

30 newcones+=[Cone(oldrays+[c.ray(0),c.ray(0)+c.ray(1)]),C c
one(oldrays+[c.ray(1),c.ray(0)+c.ray(1)])]↪→

31 else:

32 newcones+=[cone]

33 tempfan=Fan(newcones,discard_faces=True)

The inputs are a fan (fan) and a vector (vect) and the algorithm returns a new fan ∆,
obtained by subdividing fan, such that for each cone C ∈ ∆we have either <vect, c> > 0
or <vect, c> 6 0 for all c ∈ C. The algorithm cycles indefinitely subdividing a fan
tempfan that is equal to the input fan in the beginning (line 2) and then upgraded
through the cycle.

In accordance with [12], we consider only the 2-dimensional cones (line 4): in fact,
let C ∈ ∆ be a k-dimensional cone generated by (r1, . . . , rk) and suppose that for each
2-dimensional cone C ′ ∈ ∆ we have either <vect, c> > 0 or <vect, c> 6 0 for all c ∈ C ′.
For each ri, rj let C(ri, rj) ∈ ∆ be the 2-dimensional cone generated by ri and rj.
Now, without loss of generality we may assume that <vect, r1> > 0 and <vect, r2> > 0,
since we have the property for C(r1, r2). But now also <vect, r3> > 0, due to the
property applied to the cone C(r2, r3). By induction then we have <vect, ri> > 0 for
all i = 1, . . . , k.
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Notice that for 2-dimensional cones of the form C(v1, v2) the property translates as

<vect, v1> <vect, v2> > 0, (6.2)

and we check it for each 2-dimensional cone in tempfan, building a list of “bad”
cones for which the property is not satisfied (lines 5–10). If there are no bad cones,
the algorithm terminates returning the fan (lines 11–12); otherwise, we choose a
bad cone C = C(v1, v2) and define a new fan ∆(C) obtained from ∆ = tempfan

by substituting each cone C(v1, v2,w1, . . . ,wk) containing C with two new cones
generated by (v1, v1 + v2,w1, . . . ,wk) and (v1 + v2, v2,w1, . . . ,wk) respectively.

Proposition 6.19 ([12, Proposition 4.1]). The new fan ∆(C) is smooth, and a proper subdi-
vision of ∆. Moreover, if X∆ and X∆(C) are the two toric varieties associated with the fans
∆ and ∆(C) respectively, then X∆(C) is obtained from X∆ by blowing up the closure of the
2-codimensional orbit in X∆ associated with C.

The only thing to do is to find a way to choose wisely the bad cone that has to be
replaced. We follow the choice of [12]: if ∆(N) is the set of the bad 2-dimensional cones,
define

P∆ : ∆(N) −→ N× {0, 1}

C(v1, v2) 7−→ (MC, εC)

where MC = max{|<vect, v1>|, |<vect, v2>|} and

εC =

{
1 if |<vect, v1>| = |<vect, v2>|

0 otherwise.

Fix the lexicographic order on N× {0, 1}, i.e.

(0, 0) < (0, 1) < (1, 0) < (1, 1) < (2, 0) < · · ·

Lemma 6.20 ([12, Lemma 4.2]). Assume ∆(N) 6= ∅ and choose C ∈ ∆(N) such that
P∆(C) = (MC, εC) is maximum in Im(P∆).

1. If εC = 1, then ∆(C)(N) = ∆(N) r {C}.

2. If εC = 0, then max(Im(P∆(C))) 6 (MC, εC), and

#
(
P−1
∆(C)((MC, εC))

)
< #
(
P−1∆ ((MC, εC))

)
.

The previous lemma proves that, if we choose C ∈ ∆(N) such that P∆(C) = (MC, εC)

is maximum in Im(P∆), we are guaranteed that the number of bad cones eventually
decreases and the algorithm stops.
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Lines 14–24 choose this maximum cone: in particular, badlist contains the graph
of the map P∆, that is to say, it is the list of triples[

(C,MC, εC) ∈ ∆(N) ×N× {0, 1}
∣∣ C ∈ ∆(N)

]
.

This list is sorted lexicographically with respect to the order of N× {0, 1}, and the first
component of the last triple is taken and stored in the variable c (line 24). At last we
build the new fan (lines 25–33): for each cone C of tempfan, if c is a face of C, take the
generators of C and add the two new cones to newcones; otherwise, just leave C as it is.

The algorithm dcg_one_step allows us to prove the following statement.

Proposition 6.21 (see [12, Proposition 6.1]). If A is a toric arrangement in the torus T, then
there exists a fan ∆(A) such that

1. X∆(A) is a smooth T-variety, obtained from (P1)n by a sequence of blow-ups along
closures of 2-codimensional orbits;

2. every layer Ki ∈ A has an equal sign basis with respect to ∆(A).

Proof. Apply the algorithm dcg_algorithm with inputs vectors = Ξ defined in (6.1),
and the fanΩ induced by the decomposition in orthants of Rn (recall that the associated
toric variety XΩ is (P1)n).

1 def dcg_algorithm(fan,vectors):

2 tempfan=copy(fan)

3 for v in vectors:

4 tempfan=dcg_one_step(tempfan,v)

5 return tempfan

Remark. Notice that the construction of the fan ∆(A) depends on the choice of several
parameters:

• a basis for the characters group X∗(T), so to identify a character with a vector in
Zn;

• the set of characters Ξ;

• the initial input fan, in this case the orthant fan Ω.

Moreover, the set Ξ depends on the choice of a basis of Γi for each layer Ki = K(Γi, ϕi)

of A. In the next section we see another algorithm that works in dimension 2 and does
not need an input fan, thus removing a layer of arbitrariness in the construction of ∆(A).
Furthermore the fact that the ambient space is 2-dimensional forces the choice of a basis
for Γi: if Ki is 1-dimensional, then there is a unique (up to sign) primitive vector vi
such that Γi = 〈vi〉, and if Ki is 0-dimensional, then we may choose Γi = 〈(1, 0), (0, 1)〉.
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6.3 Another Way to Build the Fan

The algorithm described in the previous section begins with a smooth fan and subdi-
vides it in such a way that:

• each intermediate subdivision of the fan remains smooth;

• in the end we have a fan such that each vector of the set Ξ has the equal sign
property with respect to that fan.

Now notice that, given a set of vectors Ξ, there is a “canonical” fan with respect to
which each vector of Ξ has the equal sign property: it is the one induced by the
hyperplanes orthogonal to the vectors of Ξ. The problem is that in general this fan is
not smooth; the following algorithm subdivides it so that in the end we get a smooth
fan, in the 2-dimensional case.

1 def smooth_equal_sign_fan(veclist):

2 startrays=sorted([positive_orthogonal(v) for v in veclist],key=lambda

v: div_infty(v[0],v[1]),reverse=True)↪→

3 startrays+=[-startrays[0]]

4 finalrays=[]

5 for i in xrange(len(startrays)-1):

6 v1=startrays[i]

7 v2=startrays[i+1]

8 finalrays+=[v1] # the first ray of the cone is untouched

9 p=abs(v1[0]*v2[1]-v2[0]*v1[1]) # =|Det([v1|v2])|

10 while p!=1:

11 c1,c2=xgcd(v1[0],v1[1])[1:3] # xgcd(a,b) computes (g,c1,c2)

where g=GCD(a,b) and g=c1*a+c2*b↪→

12 q=c1*v2[0]+c2*v2[1]

13 q0=q%p

14 newv=vector([v1[0]*(p+q-q0)//p-c2,v1[1]*(p+q-q0)//p+c1])

15 finalrays+=[newv]

16 v1=newv

17 p=abs(v1[0]*v2[1]-v2[0]*v1[1])

18 finalrays+=[-v for v in finalrays]

19 cones=[]

20 for i in xrange(len(finalrays)-1):

21 cones+=[Cone([finalrays[i],finalrays[i+1]])]

22 cones+=[Cone([finalrays[-1],finalrays[0]])]

23 return Fan(cones)
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Notice that this time the input is just the set Ξ = veclist,§1 because the starting
fan is defined from it: in fact, we compute its rays in line 2. Here we use the auxiliary
function positive_orthogonal, that takes a 2-dimensional vector v = (v1, v2) and
returns either (v2,−v1) or (−v2, v1) depending on which one belongs to the upper half-
plane. These rays are sorted counter-clockwise starting from the positive x-semiaxis; to
do so, we defined a function

div_infty(a,b) :=

{
a/b if b 6= 0
sgn(a) ·∞ otherwise.

We then add the opposite of the first vector, so that startrays contains all the rays
delimiting the “upper cones” of the fan (see Figure 6.1).

Figure 6.1: Rays in the list startrays for veclist = {(−1, 0), (1, 1), (1,−2)}, with the
cones highlighted. Dots represent the lattice points.

The lines 5–17 divide each cone so that the resulting fan is smooth. Suppose that the
two rays delimiting a cone C are v1 = (x, y) and v2 = (z,w); smoothness is guaranteed
as long as

det

x z

y w

 = ±1,

so we compute it (or better, its absolute value) and we call it p (line 8). If p = 1, we
leave the cone untouched; otherwise, we proceed in the following way. Let c1, c2 such
that c1 x + c2y = 1 (they exist because v1 is supposed to be primitive; line 11) and
notice that the value c1 z+ c2w (mod p) does not depend on the choice of c1 and c2.
In fact, let c ′1, c ′2 be another such choice; therefore

0 = 1− 1 = (c1 x+ c2y) − (c ′1x+ c
′
2y) = (c1− c ′1)x+ (c2− c ′2)y

and on the other hand there exists k such that zmod p

wmod p

 = k

xmod p

ymod p


§1It is assumed that Ξ contains only primitive vectors and does not contain parallel vectors.
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(this is because det ≡ 0 (mod p), but none of the vectors can be the zero vector modulo
p since they are primitive). It follows that

(c1 z+ c2w) − (c ′1z+ c
′
2w) = (c1− c ′1)z+ (c2− c ′2)w

≡ k
(
(c1− c ′1)x+ (c2− c ′2)y

)
≡ 0 (mod p).

Now let q = c1 z+c2w and let q0 be the remainder of the division of q by p (lines 12 and
13). Notice that 0 6 q0 < p and that GCD(q0, p) = 1 (by absurd: let GCD(q0, p) = h > 1;
since h | q0 and h | p, by definition h | q, hence the vector (q, p) is not primitive; but c1 c2

−y x

 z
w

 =

q

p


and the determinant of the matrix is c1 x + c2y = 1, so it sends primitive vectors to
primitive vectors). Therefore we define the vector (line 14)

newv :=
1

p

(
(p− q0)v1+ v2

)
=
1

p

(p+ q− q0)x− c2 p

(p+ q− q0)y+ c1 p

,
where it is an easy check that the division is exact, i.e. newv ∈ Z2. Now notice that newv
belongs to the cone generated by v1 and v2, because it is a linear combination of them
with positive coefficients (remember that q0 < p); moreover,

det
v1

∣∣∣ newv =
p− q0

p
det
v1

∣∣∣ v1+
1

p
det
v1

∣∣∣ v2 = ±p

p
= ±1

so the cone C(v1, newv) is smooth. On the other hand

det
newv

∣∣∣ v2 =
p− q0

p
det
v1

∣∣∣ v2+
1

p
det
v2

∣∣∣ v2 = ±p(p− q0)

p
= ±(p− q0)

and |p− q0| < p, so we can reapply the algorithm to the cone C(newv, v2) (lines 15–17).
Since the absolute value of the new determinant strictly decreases, we can prove by
induction that the algorithm terminates with p = 1.

Once all the (upper) cones have been subdivided, we add all the opposites of the
rays to the list finalrays (line 18), compute the actual cones (lines 19–22) and return
the fan.

6.4 Examples

In this section we show some 2-dimensional fans computed with the two algorithms
analysed in the previous sections. In the figures, the fan on the left is obtained with the
dcg_algorithm algorithm, and the fan on the right with the smooth_equal_sign_fan

one.
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(a) Output of dcg_algorithm. (b) Output of smooth_equal_sign_fan.

Figure 6.2: Fans starting from Ξ = {(−1, 0), (1, 1), (1,−2)}.

Example 6.1. The first example is obtained from Ξ = {(−1, 0), (1, 1), (1,−2)} (Fig-
ure 6.2). For this example we detail each step of the two algorithms; let us begin
with dcg_algorithm.

The starting fan is the orthant fan Ω, whose 2-dimensional cones are C(e1,e2),
C(e2,−e1), C(−e1,−e2) and C(−e2,e1), where e1 = (1, 0) and e2 = (0, 1). The first
vector of Ξ is v1 = (−1, 0); let us look for the bad cones:

<v1,e1> = −1, <v1,e2> = 0,

<v1,−e1> = 1, <v1,−e2> = 0.

Since all the cones of Ω contain one between e2 and −e2 as a generator, condition (6.2)
is always satisfied, because

<v1,±e1> <v1,±e2> = 0.

Therefore v1 already has the equal sign property with respect to Ω, and the fan is
untouched. The algorithm proceeds with the next vector of Ξ, that is v2 = (1, 1). This
time we have

<v2,e1> = 1, <v2,e2> = 1,

<v2,−e1> = −1, <v2,−e2> = −1,

so there are two bad cones: C1 = C(e2,−e1) and C2 = C(−e2,e1). We apply PΩ to
choose the one to subdivide:

PΩ(C1) = PΩ(C2) = (1, 1),

therefore the algorithm just chooses one of them.§2 In the subdivision part of the

§2This actually depends on how the sorted function is implemented in SageMath; for this example we
suppose that in line 24 the algorithm sets c = C1.
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algorithm, the new cones are

C(e2,e2 − e1) and C(e2 − e1,−e1)

so the new fan ∆(1) has now five 2-dimensional cones. The algorithm now keeps the
vector v2 and checks the property with the new fan: since

<v2,e2 − e1> = <v2,e2>− <v2,e1> = 0,

the two new cones of ∆(1) satisfy the equal sign property, and the only bad cone is C2.
The algorithm subdivides it in

C(−e2,e1 − e2) and C(e1 − e2,e1)

so that the new fan ∆(2) has now six 2-dimensional cones. A quick computation shows
that now v2 has the equal sign property with respect to ∆(2), so the algorithm proceeds
with the final vector of Ξ, v3 = (1,−2). We compute all the products

<v3,e1> = 1, <v3,e2> = −2,

<v3,−e1> = −1, <v3,−e2> = 2,

<v3,e2 − e1> = −3, <v3,e1 − e2> = 3,

and discover that the bad cones of ∆(2) are C ′1 = C(e1,e2) and C ′2 = C(−e1,−e2).
Therefore the algorithm computes

P∆(2)
(C ′1) = P∆(2)

(C ′2) = (2, 0),

and we suppose that it chooses to subdivide C ′1, producing the new fan ∆(3) with the
two new cones

C ′1,1 = C(e1,e1 + e2) and C ′1,2 = C(e1 + e2,e2).

Now, <v3,e1 + e2> = −1, therefore the bad cones of ∆(3) are C ′2 and C ′1,1. Since

P∆(3)
(C ′2) = (2, 0) > (1, 1) = P∆(3)

(C ′1,1),

the algorithm subdivides C ′2 in

C ′2,1 = C(−e1,−e1 − e2) and C ′2,2 = C(−e1 − e2,−e2),

producing the fan ∆(4). We compute <v3,−e1 − e2> = 1 and find that the bad cones of
∆(4) are C ′1,1 and C ′2,1. The function P∆(4)

assumes the same value on them, which is
(1, 1), so we suppose that the algorithm subdivides C ′1,1 in

C(e1, 2e1 + e2) and C(2e1 + e2,e1 + e2).
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−→ −→ −→

−→ −→ −→

Ω ∆(1) ∆(2)

∆(3) ∆(4) ∆(5) and ∆(6)

Figure 6.3: Series of steps of dcg_algorithm to create the fan of Figure 6.2a.

Finally we get <v3, 2e1 + e2> = 0, therefore the only bad cone of the new fan ∆(5) is
C ′2,1, which is subdivided in

C(−e1,−2e1 − e2) and C(−2e1 − e2,−e1 − e2).

This last fan ∆(6) has no bad cones and the algorithm terminates.
Now let’s look at the smooth_equal_sign_fan algorithm. At first it computes the

positive orthogonal vectors, which are w1 = (0, 1), w2 = (−1, 1) and w3 = (2, 1). The
three upper cones, ordered counter-clockwise from the positive x-axis, are

C1 = C(w3,w1), C2 = C(w1,w2), C3 = C(w2,−w3).

For each cone, now, the algorithm checks if it is smooth. The first one is C1:

det
w3

∣∣∣ w1 = det

2 0

1 1

 = 2

so the cone has to be subdivided. The vector w3 is added to finalrays and all the
coefficients are computed: c1 = 1 and c2 = −1 (because 1 · 2+ (−1) · 1 = 1), therefore
q = 1 · 0+ (−1) · 1 = −1 and q0 = −1mod 2 = 1. The new ray is

w ′1 =
1

2

(
(2− 1)w3 +w1

)
=

1
1

,
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which is added to finalrays. The cone C(w3,w ′1) is guaranteed to be smooth: the
algorithm checks C(w ′1,w1) computing

det
w ′1

∣∣∣ w1 = det

1 0

1 1

 = 1.

Also this cone is smooth; the algorithm then proceeds with the second cone C2. It
turns out that

det
w1

∣∣∣ w2 = det

0 −1

1 1

 = 1

so C2 is already smooth and it is left untouched. The last cone to test is C3:

det
w2

∣∣∣ −w3

 = det

−1 −2

1 −1

 = 3

so the algorithm has to subdivide the cone. It computes all the numbers it needs:
c1 = 0 and c2 = 1 is a possible choice that brings q = 0 · (−2) + 1 · (−1) = −1 and
q0 = −1mod 3 = 2. Therefore the new vector is

w ′2 =
1

3

(
(3− 2)w2 −w3

)
=

−1

0

.
As before, the cone C(w2,w ′2) is smooth; for the other cone C(w ′2,−w3) the algorithm
computes

det
w ′2

∣∣∣ −w3

 = det

−1 −2

0 −1

 = 1

so no more subdivision is needed. Finally the algorithm adds all the negative vectors
and returns the fan pictured in Figure 6.2b.

−→ −→

−→ −→

Figure 6.4: Series of steps of smooth_equal_sign_fan that divides the upper cones.
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(a) Output of dcg_algorithm. (b) Output of smooth_equal_sign_fan.

Figure 6.5: Fans starting from Ξ = {(1, 0), (5,−1)}.

The previous example seems to suggest that the two algorithms return the same
fan. This is not true in general, as the following example shows.

Example 6.2. Consider the two outputs for the set of vectors Ξ = {(1, 0), (5,−1)}. The fan
of Figure 6.5b has just four cones, that are the ones generated by the rays orthogonal to
the vectors in Ξ. This is because these cones are already smooth: for example, if we
focus on C

(
(1, 5), (0, 1)

)
, we have

det

1 0

5 1

 = 1.

On the other hand, dcg_algorithm adds the vector (1, 0) in the fan, which not only has
nothing to do with the vectors of Ξ, but also forces the algorithm to produce a great
amount of other vectors. A similar situation happens in the fans of Figure 6.6.

(a) Output of dcg_algorithm. (b) Output of smooth_equal_sign_fan.

Figure 6.6: Fans starting from Ξ = {(−1, 3), (−1, 4)}.
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Chapter 7

Cohomology of the Wonderful
Model

In the previous chapter we have seen how it is possible to construct a projective
wonderful model YA for the complement of a toric arrangement A. To do so, we
defined a good toric variety XA by subdividing suitably a given fan. Now we would
like to know something more about the topology of YA. We follow a recent article by
De Concini and Gaiffi [11], where it is described an explicit presentation of H∗(YA;Z)
as a quotient of a polynomial ring with coefficients in H∗(XA;Z).

The cohomology ring H∗(XA;Z) can be described in terms of the fan associated
with XA (see Theorem 7.2 below), so we are able to compute it. The other main objects
involved in the description of the presentation of H∗(YA;Z) are the poset of layers C(A)
(Definition 7.1) and a well-connected building set (Definition 7.5). It is not difficult to
put this information together and develop an algorithm that computes the presentation
of H∗(YA;Z). In this chapter we outline an algorithm that does so and give some
examples of cohomology rings of wonderful models obtained through it.

7.1 A Presentation of the Cohomology Ring

The first ingredient needed to compute the cohomology ring is the “toric version” of
the intersection poset of a hyperplane arrangement.

Definition 7.1. Let A be a toric arrangement in the torus T. The poset of layers C(A) is
the set of all the connected components of the non-empty intersections of the layers
of A, partially ordered by reverse inclusion. It includes T as the intersection of zero
layers.

Notice that for toric arrangements the intersection of two layers may not be con-
nected, but each connected component is a layer. In particular, if K1 = K(Γ1, ϕ1) and

109
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K2 = K(Γ2, ϕ2), then each connected component of K1 ∩K2 is a layer K(Γ,ϕ) where Γ
is the saturation of Γ1 + Γ2.§1

Example 7.1. Let A = {K1,K2} Ď (C∗)2 be the toric arrangement where Ki = K(Γi, ϕi)

with

Γ1 =

〈1
0


〉
, ϕ1 :

1
0

 7→ 1 and Γ2 =

〈1
2


〉
, ϕ2 :

1
2

 7→ 1,

in other words K1 = {(t1, t2) ∈ (C∗)2 | t1 = 1} and K2 = {(t1, t2) ∈ (C∗)2 | t1t
2
2 = 1}.

It is immediate to show that

K1 ∩K2 = {(1, 1), (1,−1)},

therefore the Hasse diagram of C(A) has the form pictured in Figure 7.1.

(1, 1) (1,−1)

T

K1 K2

Figure 7.1: Hasse diagram of C(A) for the arrangement of Example 7.1.

In order to compute the poset of layers of a toric arrangement A, we will use
an algorithm outlined by Matthias Lenz in [31]. However, his definition of toric
arrangements is slightly different from ours: first of all, Lenz deals with the real compact
torus (S1)n instead of the complex algebraic torus (C∗)n. In Lenz’s view, a toric
arrangement is a finite collection of (possibly disconnected) hypersurfaces

A = {S1, . . . , Sm} Ď (S1)n

where Si is defined by a vector vi = (vi,1, . . . , vi,n) ∈ Zn in the following way:

Si := {(α1, . . . , αn) ∈ (S1)n | αvi,11 · · ·αvi,nn = 1}. (7.1)

The vectors vi are not required to be primitive; in particular, if GCD(vi,1, . . . , vi,n) = d,
then Si has d connected components.

§1Recall that, if L Ď Zn is a sublattice, its saturation is the lattice {v ∈ Zn | ∃ d ∈ Z, d 6= 0 s.t. dv ∈ L}.
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For now we consider toric arrangements that are compatible with Lenz’s definition;
in Section 7.3 we will see a first generalization. Starting from a matrix M ∈Mn×m(Z)

with columns v1, . . . , vm not necessarily primitive, we define a divisorial arrangement
in the torus (C∗)n as

A = AM := K1 ∪ · · · ∪ Km (7.2)

where, for each vi, if di = GCD(vi,1, . . . , vi,n), Ki is the set of layers

Ki := {K(Γi, ϕi,j) | j = 0, . . . , di − 1}

such that Γi = 〈ṽi〉 and ϕi,j : ṽi 7→ ηj, with ṽi = (vi,1/di, . . . , vi,n/di) and η a primitive
di-th root of unity. Notice that #(Ki) = di and #(A) = d1 + · · ·+ dm.

Example 7.2. Consider the matrix

M =

2 1 3

0 1 1

.
The arrangement AM has four layers: the first column gives rise to two of them, namely

K1 = {(t1, t2) ∈ (C∗)2 | t1 = 1} and K2 = {(t1, t2) ∈ (C∗)2 | t1 = −1},

while the other two columns are primitive vectors, so they give a layer each:

K3 = {(t1, t2) ∈ (C∗)2 | t1t2 = 1},

K4 = {(t1, t2) ∈ (C∗)2 | t31t2 = 1}.

The corresponding arrangement of (S1)2 and the poset of layers are depicted in
Figure 7.2.

K1

K2K3

K4

(1, 1) (−1,−1)

T

K1 K3 K4 K2

Figure 7.2: A picture of the arrangement of Example 7.2 in the compact torus (S1)2 and
its poset of layers.
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The next step is the computation of the variety XA, using the algorithms described
in the previous chapter. As we observed above, for the arrangements AM that come
from a matrix M ∈ Mn×m(Z), if K(Γ,ϕ) ∈ AM then Γ = 〈ṽ〉 where v is a column
of M and ṽ = v/GCD(v). So we create the fan ∆(A) starting from the set Ξ =

{ṽ | v is a column of M}.
A presentation for the integer cohomology of a toric variety X∆ is well-known (see

for example [16, Section 12.4] or [25, Section 5.2]).

Theorem 7.2. Let X = X∆ be a smooth complete T-variety. Let R be the set of primitive
generators of the rays of ∆ and define a polynomial indeterminate Cr for each r ∈ R. Then

H∗(X∆;Z) ' Z[Cr | r ∈ R]
/
(ISR + IL)

where

• ISR is the Stanley-Reisner ideal

ISR := (Cr1 · · ·Crk | r1, . . . , rk do not belong to a cone of ∆);

• IL is the linear equivalence ideal

IL :=

(∑
r∈R

<β, r>Cr

∣∣∣∣∣ β ∈ X∗(T)
)
.

Notice that for ISR it is sufficient to take only the square-free monomials, and for IL it is
sufficient to take only the β’s belonging to a basis of X∗(T).

Now we have to build the wonderful model YA. This construction actually depends
on the choice of a particular subset of the poset of layers C(A).

Definition 7.3. Let Λ be a simple arrangement of subvarieties of X (see Definition 6.17).
A subset G Ď Λ is a building set for Λ if for each subvariety Λi ∈ Λr G the minimal§2

elements of the set {G ∈ G | G Ą Λi} intersect transversally and their intersection is Λi.

Let U Ď X be an open set. The restriction of an arrangement of subvarieties Λ to U
is the set

Λ
U

:= {Λi ∩U | Λi ∈ Λ, Λi ∩U 6= ∅}.

Definition 7.4. Let Λ be an arrangement of subvarieties of X. A subset G Ď Λ is a
building set for Λ if there is an open cover U of X such that

1. for every U ∈ U, the restriction Λ
U

is simple;

§2With respect to the inclusion.
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2. for every U ∈ U, G
U

is a building set for Λ
U

.

Remark. Following [11], we consider building sets for the arrangement L ′ defined at
the end of Section 6.1. If we define C0(A) := C(A) r {T}, i.e. the poset of layers of A
without the minimum element T, the closure operation establishes a poset isomorphism
L ′ ' C0(A), therefore we consider building sets as subsets of C0(A) itself.

In order to compute the cohomology of YA using the methods of [11], a building
set is required to have an additional property.

Definition 7.5. A building set G is well-connected if for any subset {G1, . . . , Gk} Ď G, if
the intersection G1 ∩ · · · ∩ Gk has two or more connected components, then each of
these components belongs to G.

Example 7.3. If Λ is a simple arrangement, then each building set G for Λ is well-
connected. In fact every intersection G1 ∩ · · · ∩ Gk is either empty or connected. As
none of them verifies the antecedent, the condition of Definition 7.5 is vacuously true.

Since YA depends on the choice of G, we should write YA(G); however we will stay
with the simpler notation YA and leave the building set G implicit when there is no
ambiguity.

Remark. One may choose G = C0(A), which is always a well-connected building set.
With this choice the computation G is avoided; however bigger building sets imply
more computation, and overall more complicated wonderful model and cohomology.

The following algorithm is able to find the minimal well-connected building set for a
given arrangement A defined by the matrix M: this allows us to compute the “simplest”
wonderful model.

1 def minimal_well_connected_building_set(M):

2 P=poset_of_layers(M)

3 G=P.level_sets()[1] # all layers of the arrangement

4 for A in Subsets(P.level_sets()[1]):

5 if A.cardinality()>=2:

6 Int=intersection_of_poset_subset(P,A)

7 if len(Int)>=2:

8 G+=list(Int)

9 for level in P.level_sets()[2:]:

10 for p in level:

11 if p not in G:

12 C=M.matrix_from_columns(list(p[0]))

13 cod=C.rank()

14 minimal=reduce_list([q for q in G if P.is_lequal(q,p)],lambda

s,t: P.is_gequal(s,t))↪→
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15 ranks=sum([M.matrix_from_columns(list(q[0])).rank() for q in

minimal],0)↪→

16 if cod!=ranks:

17 G+=[p]

18 return P.subposet([P.bottom()]+G)

The starting point is the matrix M that defines the arrangement. The algorithm
computes the poset of layers P = C(A) using an implementation of Lenz’s algo-
rithm [31] and defines a “candidate building set” G, in which there are the layers of A
(P.level_sets()[1]).

Then the algorithm checks the “well-connected” condition (lines 4–8): for each
possible intersection of layers of A, if it has at least two connected components, the
algorithm includes all of them in the candidate building set. Here we use the auxiliary
function intersection_of_poset_subset that, given a poset P and a subset A Ď P,
returns the set {H ∈ P | H > G for all G ∈ A}, i.e. in this case the set of the connected
components of the intersection of all elements in A.

After that the algorithm decides which of the remaining elements of P must be
included in order to have a building set. Recall that we have to check that, if p ∈ P does
not belong to the building set, then the minimal elements (with respect to inclusion)
of the set Gp := {G ∈ G | G Ě p} intersect transversally and their intersection is p

(see Definition 7.3). Notice that to check this condition it suffices to consider only
the elements G ∈ G such that rk(G) < rk(p).§3 Therefore the algorithm produces the
candidate building set one level at a time, starting from rank two (line 9). For each
element p not belonging to the candidate building set, the algorithm computes its
codimension (lines 12–13) and the minimal elements of the set Gp (line 14). In this line,
reduce_list is a generalization of reduce_ideal_list of Section 4.2: it takes a list L of
elements and a boolean-valued function f with two inputs of L and returns a new list
L ′ = [` ∈ L | @m ∈ L s.t. f(`,m) = True]. For this algorithm we use the function defined
as f(G1, G2) = True if and only if G1 > G2 in C(A), that is to say G1 Ď G2.

The intersection of the elements in minimal is guaranteed to be exactly p, because
otherwise it would be disconnected and p would be put in G during the cycle of lines
4–8. The only failure happens if this intersection is not transversal, i.e. the sum of
codimensions of the elements in minimal is different than the codimension of p. In this
case, p must be added to the elements of G (lines 15–17); otherwise, we may choose to
add it or not. Actually the algorithm always chooses not to add it, thus computing the
minimal building set: it is possible to modify the algorithm, adding an else condition
between lines 17 and 18, in order to let the user decide.

Finally the algorithm returns the subposet generated by G and the whole torus
(P.bottom()). Recall that it does not actually belong to the building set, but we include

§3This is the rank of C(A): remember that it is a poset ranked by codimension.
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it here because of how subsequent algorithms do their computations.
We are ready to show the presentation of H∗(YA;Z) obtained by De Concini and

Gaiffi in [11]. Let XA be a good toric variety for A and let B := H∗(XA;Z) be its
cohomology ring. For each G ∈ G let TG be a polynomial indeterminate. We are
going to produce an ideal IW of the polynomial ring B[TG | G ∈ G] such that the
cohomology ring of YA is isomorphic to the quotient B[TG | G ∈ G]

/
IW. To do so, we need

some auxiliary polynomials.
Let Z be an indeterminate and, for every G ∈ C(A) denote by ΓG the lattice such

that G = K(ΓG, ϕ). For every pair (M,G) ∈ C(A) × C(A) with M 6 G (i.e. G Ď M)
choose a basis (β1, . . . , βs) for ΓG such that (β1, . . . , βk), with k 6 s, is a basis for
ΓM. If M is the whole torus T, then choose any basis of ΓG and let k = 0. Define the
polynomials PMG ∈ B[Z] as

PMG :=

s∏
j=k+1

(
Z−
∑
r∈R

min(0, <βj, r>)Cr

)
. (7.3)

Notice that we allow G =M: in that case PGG := 1 since it is an empty product.
Now consider the following set:§4

W :=
{
(G,A) ∈ G× P(G)

∣∣ G Ł K for all K ∈ A
}
.

For each G ∈ G define
BG := {H ∈ G | H Ď G} (7.4)

and for each (G,A) ∈ W with A = {G1, . . . , Gk} let M be the unique connected
component of G1 ∩ · · · ∩ Gk that contains G (if A = ∅, let M = T). Define the
polynomial in B[TG | G ∈ G]

F(G,A) := PMG

( ∑
H∈BG

−TH

)∏
K∈A

TK. (7.5)

Finally let W0 := {A = {G1, . . . , Gk} ∈ P(G) | G1 ∩ · · · ∩ Gk = ∅}. For each A ∈ W0

define the polynomial in B[TG | G ∈ G]

F(A) :=
∏
K∈A

TK. (7.6)

Theorem 7.6 ([11, Theorem 7.1]). The cohomology ring H∗(YA;Z) is isomorphic to the
quotient of B[TG | G ∈ G] by the ideal IW generated by

1. the products CrTG, with G ∈ G and r ∈ R such that r does not belong to VΓG ;§5

§4For a set X, we denote by P(X) the power set of X.
§5Recall that VΓ := {v ∈ V | <χ, v> = 0 for all χ ∈ Γ }.
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2. the polynomials F(G,A) for every pair (G,A) ∈W;

3. the polynomials F(A) for every A ∈W0.

Putting all together, we have

H∗(YA;Z) ' B[TG | G ∈ G]
/
IW ' Z[Cr, TG | r ∈ R, G ∈ G]

/
(ISR + IL + IW).

Remark. It is known (see [12, Theorem 9.1]) that the cohomology of the projective
wonderful model YA satisfies:

• Hi(YA;Z) = 0 for i odd;

• Hi(YA;Z) is torsion-free for i even.

Notice that the ideal IW is homogeneous and that the image of an indeterminate TG
under the isomorphism stated in Theorem 7.6 belongs to H2(YA;Z) ([11, Theorem 7.1]
describes this isomorphism explicitly). This means that H∗(YA;Z) and B[TG | G ∈ G]

/
IW

are isomorphic as graded rings and that(
B[TG | G ∈ G]

/
IW

)
i
' H2i(YA;Z).

In particular, if B is a monomial basis of B[TG | G ∈ G]
/
IW as Z-module, we have

rk(H2i(YA;Z)) = #({m ∈ B | deg(m) = i}).

We have implemented in the SageMath language all the previous steps. The fol-
lowing code takes as input an integer matrix Mat ∈ Mn×m(Z) representing a toric
arrangement in (C∗)n and returns the ideal ISR + IL + IW. It takes also a boolean
flag minimal_building that controls the building set: if the flag is True, the algorithm
computes the minimal one using minimal_well_connected_building_set; otherwise,
it uses the whole C0(A).

1 def wonderful_cohomology_ring(Mat,minimal_building):

2 P=poset_of_layers(Mat)

3 if minimal_building:

4 G=minimal_well_connected_building_set(Mat)

5 else:

6 G=copy(P)

7 primitive_vectors=[vector([ci//GCD(C) for ci in C]) for C in

Mat.columns()]↪→

8 n=Mat.nrows() # dimension of torus

9 if n==2: # choose algorithm

10 F=smooth_equal_sign_fan(primitive_vectors)
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11 else:

12 P1n=build_fan_P1n(n)

13 F=dcg_algorithm(P1n,primitive_vectors)

14 bases_dict=bases_dictionary(Mat)

15 r=F.nrays()

16 g=G.cardinality()-1

17 R=PolyRingCohomology(r,g) # Q[c1,...,cr,t1,...,tg]

18 c=[1]+list(R.gens()[:r]) # so that c[i]=c_i

19 t=[1]+list(R.gens()[r:]) # so that t[i]=t_i

20 poly_dict={}

21 RR=PolynomialRing(R,"z")

22 z=RR.gen()

23 vec_rays=[vector(tuple(v)) for v in F.rays()]

24 for pair in bases_dict.iterkeys():

25 poly_dict[pair]=prod([z-sum([min(0,vec.dot_product(vec_rays[i]))*c[ c
i+1] for i in xrange(r)],0) for vec in

bases_dict[pair][1]],1)

↪→

↪→

26 for p in P:

27 poly_dict[(p,p)]=RR.one()

28 RC=PolynomialRing(QQ,["x_{}".format(i+1) for i in xrange(r)]) #

Q[x_1,...,x_r]↪→

29 ISR=[rel(c[1:]) for rel in F.Stanley_Reisner_ideal(RC).gens()]

30 IL=[rel(c[1:]) for rel in F.linear_equivalence_ideal(RC).gens()]

31 ordered_G=sum(G.level_sets()[1:],[])

32 CT=[]

33 for p in ordered_G:

34 MM=[primitive_vectors[v] for v in p[0]]

35 for ray in vec_rays:

36 found=False

37 for vec in MM:

38 if vec.dot_product(ray)!=0:

39 found=True

40 break

41 if found:

42 CT+=[c[vec_rays.index(ray)+1]*t[ordered_G.index(p)+1]]

43 FF=[]

44 for p in ordered_G:

45 Asets=Subsets([q for q in G.principal_order_ideal(p) if (q!=p and

q!=G[0])])↪→

46 Bi=[q for q in G.principal_order_filter(p) if q!=G[0]]
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47 for A in Asets:

48 if len(A)==0:

49 M=G[0]

50 else:

51 Aints=[q for q in intersection_of_poset_subset(P,A) if

q!=P[0]] # note the poset P here↪→

52 for q in Aints:

53 if P.is_lequal(q,p):

54 M=q

55 break

56 poly=poly_dict[(M,p)]

57 FF+=[poly(sum([-t[ordered_G.index(h)+1] for h in

Bi],0))*prod([t[ordered_G.index(j)+1] for j in A],1)]↪→

58 FA=[]

59 for A in Subsets(ordered_G):

60 try:

61 Aints=[q for q in intersection_of_poset_subset(P,A) if q!=P[0]]

62 except ValueError: continue

63 if len(Aints)==0:

64 FA+=[prod([t[ordered_G.index(j)+1] for j in A],1)]

65 return R.ideal(ISR+IL+CT+FF+FA)

The algorithm wonderful_cohomology_ring is quite straightforward. First of all it
computes P = C(A) (line 2) and chooses the building set G = G, depending on the value
of minimal_building (lines 3–6). Then it computes the fan associated with a good
toric variety for A (lines 7–13): it creates the list primitive_vectors that contains the
columns of Mat, each divided by the GCD of its elements. Depending on the dimension
of the torus, the algorithm chooses either smooth_equal_sign_fan or dcg_algorithm

described in the previous chapter. In line 12, the auxiliary algorithm build_fan_P1n

returns the fan Ω generated by the orthants of Rn, which is used to start dcg_algorithm.
Line 14 uses the algorithm bases_dictionary, which returns a (Python) dictio-

nary bases_dict indexed by pairs (M,G) ∈ C(A) × C(A) with M < G such that
bases_dict[(M,G)] is a pair of lists of vectors ([v1, . . . , vk], [vk+1, . . . , vs]) with ΓM =

〈v1, . . . , vk〉 and ΓG = 〈v1, . . . , vs〉. This algorithm is important per se, so we report its
code here.

1 def bases_dictionary(Mat):

2 n=Mat.nrows()

3 P=poset_of_layers(Mat)

4 layer_basis={}

5 for p in P:
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6 Mp=Mat.matrix_from_columns(list(p[0]))

7 HF=Mp.transpose().hermite_form()

8 layer_basis[p]=matrix([[ri//GCD(row) for ri in row] for row in

HF.rows()]).transpose() # the COLUMNS are a basis↪→

9 bases_dict={}

10 for p in P:

11 for q in P:

12 if p==P[0] and q!=P[0]:

13 bases_dict[(p,q)]=([],[vector(c) for c in

layer_basis[q].columns()])↪→

14 elif P.is_less_than(p,q):

15 A=layer_basis[p]

16 k=A.ncols()

17 B=layer_basis[q]

18 s=B.ncols()

19 R=A.smith_form()[1] # matrix of the row operations

20 C=zero_matrix(k,s).stack((R*B).matrix_from_rows(range(k,n)))

21 HF=C.transpose().hermite_form(include_zero_rows=False).transp c
ose()↪→

22 newC=R.inverse()*HF

23 bases_dict[(p,q)]=([vector(c) for c in

A.columns()],[vector(c) for c in newC.columns()])↪→

24 return bases_dict

After the computation of the poset of layers P, this algorithm creates a dictionary
layer_basis indexed by the elements of C(A) such that, for G ∈ C(A), layer_basis[G]
is a matrix whose columns form a basis for ΓG (lines 4–8). To do so, it takes from Mat

the columns corresponding to the layers of AMat that give G (line 6)§6 and computes the
Hermite form.§7 The rows of this matrix are not necessarily primitive: in fact, when the
algorithm extracts the generators of ΓG in line 4, it takes them from the original matrix
Mat, thus in some sense it considers all the connected components of the intersections
of the hypersurfaces Si (defined in Equation (7.1)), among which there is G. More
precisely, suppose that p[0] = {i1, . . . , ik}: then the corresponding columns of Mat

define all the connected components of Si1 ∩ · · · ∩ Sik . This is not a problem, because
all these layers share the same lattice ΓG, which can be found by “primitivizing” the

§6If P is the output of poset_of_layers(Mat), then an element p ∈ P is a pair such that the first
component contains the indices of the columns of Mat corresponding to the 1-codimensional layers whose
intersection has p as a connected component.

§7In SageMath, the method hermite_form does row operations, so we have to transpose the matrix before
computing it.
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generators. Therefore the algorithm divides each row of the Hermite form by the GCD
of its coefficients (line 8), recovering a basis of the lattice ΓG.

Once that we have bases for all the layers in the poset, the algorithm defines a
new dictionary bases_dict and goes through each pair (M,G) ∈ C(A)× C(A) (in the
algorithm, they correspond to the pairs (p, q) ∈ P×P). For the pairs (T, G) the algorithm
defines bases_dict[(T, G)] = [[ ], [columns of layer_basis[G]]]; for the pairs (M,G)

with M < G, it implements the following procedure.
If M < G, then ΓM Ď ΓG, so ΓM + ΓG = ΓG. Suppose that (β1, . . . , βk) is a basis

for ΓM and (γ1, . . . , γs) is a basis for ΓG, where the βi’s and the γj’s are the columns
of layer_basis[M] and layer_basis[G] respectively (in particular k < s). It follows
that {β1, . . . , βk, γ1, . . . , γs} is a set of generators for ΓG. Consider the matrices

A =


| |

β1 · · · βk
| |

 ∈Mn×k(Z), B =


| |

γ1 · · · γs
| |

 ∈Mn×s(Z)

and put them aside to form the matrix

[A|B] =


| |

β1 · · · βk
| |

∣∣∣∣∣∣∣
| |

γ1 · · · γs
| |

 ∈Mn×(k+s)(Z).

Change basis so that ΓM becomes the lattice generated by the first k vectors of the
standard basis of Zn. In order to do so, compute the Smith form of the matrix A. In
particular, find two unimodular matrices R ∈Mn×n(Z), U ∈Mk×k(Z) such that

RAU =

Ik
0


where Ik is the k× k identity matrix and 0 is a zero (n− k)× k block. This change of
bases applied to the whole matrix [A|B] becomes

R [A|B]

U 0

0 Is

 =

Ik
0

∣∣∣∣∣ RB
.

Use the first k columns of this matrix to kill the upper part of the matrix RB, obtaining
a matrix of the form 0

C


with a zero k× s block and C ∈M(n−k)×s(Z). After all these operations, we have that
the columns of the matrix Ik 0

0 C
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are a set of generators for ΓG: to recover a basis, compute the Hermite form with column
operations, obtaining a new matrix Ik 0

0 C̃


where only s− k columns of C̃ are different than zero (because the rank of ΓG is s). Denote
by C ′ the (n− k)× (s− k) matrix obtained from C̃ by removing the zero columns; the
columns of the n× s matrix

R−1
Ik 0

0 C ′

U−1 0

0 I(s−k)

 =

A
∣∣∣∣∣ R−1

 0

C ′


are a basis of ΓG, and the first k columns are a basis of ΓM.

Now we come back to the description of wonderful_cohomology_ring. The algo-
rithm collects all the information it needs to compute the polynomial ring Z[Cr, TG | r ∈
R, G ∈ G]: the number of rays of the fan r (line 15) and the number of elements in
the building set G, which is g = #(G) − 1 (line 16). PolyRingCohomology(r,g) is an
auxiliary function that takes two integers r and g and returns the ring

R = Q[c1, . . . , cr, t1, . . . , tg].

The indeterminates are stored in two lists for later use.
The algorithm then proceeds to the computation of the polynomials PMG (lines 21–

27). This is done by defining another dictionary poly_dict, indexed by the pairs
(M,G) ∈ C(A) × C(A) such that M 6 G, where poly_dict[(M,G)] = PMG . This is
quite easy: after the ring definition RR = R[z] (it includes also the variables t1, . . . , tg,
even if they are not used for the PMG ’s) and a technical passage to convert the rays
to the type vector, the algorithm populates the dictionary using the definition of the
PMG ’s (Equation (7.3)). Note that the polynomials PGG = 1 are included (lines 26–27).

Once that the setup is complete, the algorithm begins to compute the ideal
(ISR + IL + IW). The first two ideals are easy, because SageMath has already the
methods Stanley_Reisner_ideal and linear_equivalence_ideal that compute ISR

and IL respectively. In order to keep things clean, we define a new polynomial ring
RC = Q[x1, . . . , xr] and compute the relations in this ring, evaluating xi = ci only in a
second moment.

The only computation left is IW. There are three types of relations, and the
algorithm computes them one type at a time. First of all, we fix an auxiliary list
ordered_G which contains the elements of G (without T) ordered in such a way that if
ordered_G[i] < ordered_G[j] then i < j (line 31). This helps the user of this algorithm to
identify the element p ∈ G corresponding to a variable ti: it is ordered_G[i− 1] (recall
that SageMath indexes the lists starting from 0).
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1. The products CrTG are computed in lines 32–42. For each G ∈ G the algorithm
chooses a set of generators MM and begins to test each ray. The product CrTG is
included only if it does not belong to VΓi , i.e. there is a vector vec in MM such that
<vec, r> 6= 0.

2. The polynomials F(G,A) for (G,A) ∈W are computed in lines 43–57. For each
G ∈ G, Asets is the set {A ∈ P(G) | (G,A) ∈ W} and Bi is the set BG defined
in (7.4). Then, for each A ∈ Asets, the algorithm computes the corresponding
M (note the use of P in lines 51 and 53: this is because the intersection of the
elements of A needn’t belong to G), recovers the polynomial poly = PMG and adds
F(G,A) to the relations in FF.

3. The polynomials F(A) for A ∈ W0 are computed in lines 58–64. The function
intersection_of_poset_subset raises a ValueError if A is empty, therefore in
that case the algorithm continues with the next subset; if the intersection of
the elements of A is empty, the corresponding polynomial F(A) is added to the
relations in FA.

Finally the algorithm returns the ideal generated by all the relations found.

7.2 Examples

In this section we show some small examples of cohomology rings of projective
wonderful models. In all of them, except the last one, we use the whole poset C0(A) as
the well-connected building set for the wonderful model YA.

Example 7.4. For the first example, which we are going to analyse in detail, we use
again the arrangement of Example 7.1; recall that it has two layers

K1 = {(t1, t2) ∈ (C∗)2 | t1 = 1} and K2 = {(t1, t2) ∈ (C∗)2 | t1t
2
2 = 1}

that intersect in the two points P1 = (1, 1) and P2 = (1,−1). In particular, the arrange-
ment A is defined by the matrix 1 1

0 2

.
Now we follow the algorithm. First of all, it computes the poset of layers C(A), which
is shown in Figure 7.3 in the middle. After that we tell the algorithm to choose the
building set G = C0(A), but in this small example that makes no difference: C0(A) is
the only well-connected building set. For, let G be any such set: the two layers K1 and
K2 belong to G by default, and their intersection is disconnected, so both P1 and P2
must belong to G.
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K1

P1

P2

K2
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K1 K2
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Figure 7.3: Real picture in (S1)2 of the arrangement A associated with the vectors (1, 0)

and (1, 2), together with the poset of layers C(A) and the fan for XA.

Then the algorithm computes the list of generators of the lattices associated with
the two layers K1 and K2. In this case the columns of the matrix are primitive, so
primitive_vectors = [(1, 0), (1, 2)].

The next step is the computation of the fan. The arrangement lives in a 2-
dimensional torus, so the algorithm computes the fan using smooth_equal_sign_fan.
The result can be seen on the right in Figure 7.3.

After that we have to compute the bases dictionary. There are eight pairs (M,G) ∈
C(A)× C(A) with M < G, and we report here directly the result of bases_dictionary:

(T,K1) : [∅, [(1, 0)]], (T,K2) : [∅, [(1, 2)]],
(T, P1) : [∅, [(1, 0), (0, 1)]], (T, P2) : [∅, [(1, 0), (0, 1)]],

(K1, P1) : [[(1, 0)], [(0, 1)]], (K1, P2) : [[(1, 0)], [(0, 1)]],

(K2, P1) : [[(1, 2)], [(0, 1)]], (K2, P2) : [[(1, 2)], [(0, 1)]].

Now the algorithm defines the polynomial ring. There are eight variables C1, . . . , C8
associated with the rays of the fan and four variables T1, . . . , T4 associated with the
building set G = C(A)r {T}. For this example, the association is defined in Figure 7.3,
where the variables are written next to the elements they refer to.

It is time to define the polynomials PMG . If M = G, the polynomial is set to 1; the
other cases are

PTK1
= Z+ C2 + C3 + 2C5,

PTK2
= Z+ C3 + 2C6 + C8,

PTP1 = (Z+ C4 + C6 + C8)(Z+ C2 + C3 + 2C5),

PTP2 = (Z+ C4 + C6 + C8)(Z+ C2 + C3 + 2C5),

PK1

P1
= Z+ C4 + C6 + C8,

PK1

P2
= Z+ C4 + C6 + C8,
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PK2

P1
= Z+ C4 + C6 + C8,

PK2

P2
= Z+ C4 + C6 + C8.

Once that all ingredients have been set up, the algorithm begins to compute the
relations. At first it calls Stanley_Reisner_ideal and linear_equivalence_ideal to
compute ISR and IL respectively:

ISR = (C1C3, C1C4, C1C5, C1C6, C1C8, C2C3, C2C4, C2C6, C2C7, C2C8, C3C4,

C3C7, C3C8, C4C5, C4C6, C5C6, C5C7, C5C8, C6C7, C7C8),

IL = (−C2 − C3 + 2C4 − 2C5 + C7 + C8, C1 + C2 − C4 + C5 − C6 − C8).

Then the algorithm computes the products CrTG with G ∈ G and r ∈ R such that r
does not belong to VΓG . In this example,

1. VΓK1 is the R-span of (0, 1), so only two rays do belong to it: (0, 1) and (0,−1),
corresponding to the variables C1 and C6;

2. VΓK2 is the R-span of (−2, 1), so only two rays do belong to it: (−2, 1) and (2,−1),
corresponding to the variables C5 and C4;

3. VΓP1 and VΓP2 are the 0-dimensional vector space {(0, 0)}, so no ray belongs to
them.

It follows that the relations of the form CrTG are

C2T1, C3T1, C4T1, C5T1, C7T1, C8T1,

C1T2, C2T2, C3T2, C6T2, C7T2, C8T2,

C1T3, C2T3, C3T3, C4T3, C5T3, C6T3, C7T3, C8T3,

C1T4, C2T4, C3T4, C4T4, C5T4, C6T4, C7T4, C8T4.

(7.7)

After that there is the computation of the relations F(G,A). In this example,

W = {(K1,∅), (K2,∅), (P1,∅), (P1, {K1}), (P1, {K2}), (P1, {K1,K2}),

(P2,∅), (P2, {K1}), (P2, {K2}), (P2, {K1,K2})}.

• For G = K1, we have BK1
= {K1, P1, P2}. The only pair of W with G = K1 has

A = ∅, therefore the algorithm computes

F(K1,∅) = PTK1
(−T1 − T3 − T4) = C2 + C3 + 2C5 − T1 − T3 − T4.

• For G = K2, we have BK2
= {K2, P1, P2}. The only pair of W with G = K2 has

A = ∅, therefore the algorithm computes

F(K2,∅) = PTK2
(−T2 − T3 − T4) = C3 + 2C6 + C8 − T2 − T3 − T4.
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• For G = P1, we have BP1 = {P1} and four pairs in W with G = P1:

– A = ∅: the algorithm sets M = T and computes

F(P1,∅) = PTP1(−T3) = (C4 + C6 + C8 − T3)(C2 + C3 + 2C5 − T3);

– A = {K1}: the algorithm sets M = K1 and computes

F(P1, {K1}) = P
K1

P1
(−T3) T1 = T1(C4 + C6 + C8 − T3);

– A = {K2}: the algorithm sets M = K2 and computes

F(P1, {K2}) = P
K2

P1
(−T3) T2 = T2(C4 + C6 + C8 − T3);

– A = {K1,K2}: the algorithm sets M = P1 and computes

F(P1, {K1,K2}) = P
P1
P1
(−T3) T1T2 = T1T2.

• For G = P2, we have BP2 = {P2} and four pairs in W with G = P2:

– A = ∅: the algorithm sets M = T and computes

F(P2,∅) = PTP2(−T4) = (C4 + C6 + C8 − T4)(C2 + C3 + 2C5 − T4);

– A = {K1}: the algorithm sets M = K1 and computes

F(P2, {K1}) = P
K1

P2
(−T4) T1 = T1(C4 + C6 + C8 − T4);

– A = {K2}: the algorithm sets M = K2 and computes

F(P2, {K2}) = P
K2

P2
(−T4) T2 = T2(C4 + C6 + C8 − T4);

– A = {K1,K2}: the algorithm sets M = P2 and computes

F(P2, {K1,K2}) = P
P2
P2
(−T4) T1T2 = T1T2.

Finally there are the relations F(A) for A ∈ W0. The elements of C0(A) that don’t
intersect are the ones involving both P1 and P2, so that

W0 = {{P1, P2}, {K1, P1, P2}, {K2, P1, P2}, {K1,K2, P1, P2}}.

Therefore the algorithm adds the relations

T3T4, T1T3T4, T2T3T4, T1T2T3T4. (7.8)

The last step is the production of the ideal of all the relations: the algorithm sums
ISR, IL, the products of (7.7), the ten relations of the form F(G,A) and the relations (7.8)
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of type F(A) and returns the ideal generated by all these. After a computation of a
Gröbner basis degrevlex

§8 we conclude that

H∗(YA;Z) ' Z[C1, . . . , C8, T1, . . . , T4]
/
I

where

I = (T34 , C
2
5 − T

2
4 , C5C6, C

2
6 − T

2
4 , C5C7, C6C7, C

2
7 − 2T

2
4 , C5C8, C6C8 + T

2
4 ,

C7C8, C
2
8 − 2T

2
4 , C5T1, C6T1 + T

2
4 , C7T1, C8T1, T

2
1 − 2T24 , C5T2 + T

2
4 ,

C6T2, C7T2, C8T2, T1T2, T
2
2 − 2T24 , C5T3, C6T3, C7T3, C8T3, T1T3 + T

2
4 ,

T2T3 + T
2
4 , T

2
3 − T24 , C5T4, C6T4, C7T4, C8T4, T1T4 + T

2
4 , T2T4 + T

2
4 , T3T4,

2C1 − 2C5 + 2C6 + C7 + C8 + T1 − 2T2 − T3 − T4, C3 + 2C6 + C8 − T2 − T3 − T4,

C2 + 2C5 − 2C6 − C8 − T1 + T2, 2C4 + C7 + C8 − T1 − T3 − T4).

Moreover, we can compute a monomial basis of Z[C1, . . . , C8, T1, . . . , T4]
/
I as a Z-module

(SageMath has a method normal_basis that is able to do so). It turns out that

{T24 , T4, T3, T2, T1, C8, C7, C6, C5, 1}

is a possible choice, therefore we conclude that

H4(YA;Z) ' Z, H2(YA;Z) ' Z8, H0(YA;Z) ' Z.

Remark. In this simple case one can check that the model YA is obtained as the blow-up
of six points in P1×P1. The Betti numbers provided above agree with this construction.

Example 7.5. The next example is an arrangement defined by a matrix that has a
non-primitive column: 3 0 3

0 1 −2

.
This arrangement has five layers, and the first column gives rise to three of them. Its
realization as arrangement in (S1)2 is shown in Figure 7.4. Figure 7.5 contains its poset
of layers and the fan computed by smooth_equal_sign_fan. Recall that we chose to
use the whole C0(A) as the well-connected building set.

Using our algorithm, we find that the cohomology ring H∗(YA;Z) is isomorphic to
the quotient of Z[C1, . . . , C10, T1, . . . , T11] by the ideal

I = (T311, C
2
6 − T

2
11, C6C7, C

2
7 − 3T

2
11, C6C8, C7C8, C

2
8 − 2T

2
11, C6C9, C7C9,

C8C9 + T
2
11, C

2
9 − T

2
11, C6C10 + T

2
11, C7C10, C8C10, C9C10 + T

2
11, C

2
10 − 3T

2
11,

C6T3, C7T3, C8T3, C9T3 + T
2
11, C10T3, T

2
3 − 3T211, C6T4, C7T4, C8T4 + T

2
11,

§8This step is not part of the algorithm wonderful_cohomology_ring.
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K1

K2

K3

K4

K5

Figure 7.4: Arrangement with five layers, defined by the vectors (3, 0), (0, 1) and (3,−2).

T

K2 K3 K4 K1 K5

P1 P2 P3 P4 P5 P6

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10 T11

C1

C2

C3

C4
C5

C6

C7

C8

C9

C10

Figure 7.5: Poset of layers C(A) and fan ∆ for the arrangement of Figure 7.4. The labels
refer to the indeterminates associated with each element of C0(A) and each ray of ∆.

C9T4, C10T4, T3T4, T
2
4 − 2T211, C6T5 + T

2
11, C7T5, C8T5, C9T5, C10T5, T3T5,

T4T5, T
2
5 − 6T211, C6T6, C7T6, C8T6, C9T6, C10T6, T3T6 + T

2
11, T4T6, T5T6 + T

2
11,

T26 − T211, C6T7, C7T7, C8T7, C9T7, C10T7, T3T7, T4T7, T5T7 + T
2
11, T6T7,

T27 − T211, C6T8, C7T8, C8T8, C9T8, C10T8, T3T8, T4T8, T5T8 + T
2
11, T6T8, T7T8,

T28 − T211, C6T9, C7T9, C8T9, C9T9, C10T9, T3T9 + T
2
11, T4T9 + T

2
11, T5T9 + T

2
11,
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T6T9, T7T9, T8T9, T
2
9 − T211, C6T10, C7T10, C8T10, C9T10, C10T10, T3T10 + T

2
11,

T4T10, T5T10 + T
2
11, T6T10, T7T10, T8T10, T9T10, T

2
10 − T

2
11, C6T11, C7T11,

C8T11, C9T11, C10T11, T3T11, T4T11 + T
2
11, T5T11 + T

2
11, T6T11, T7T11, T8T11,

T9T11, T10T11, C2 − C6 − 2C9 − C10 − T3 + 2T4 − T6 + T9 − T10 + 2T11,

3C3 + C7 + 3C9 + C10 + 2T3 − 3T4 − T5 + T6 − T7 − T8 − 2T9 + T10 − 4T11,

C4 + 2C8 + 3C9 + C10 − T5 − T6 − T7 − T8 − T9 − T10 − T11,

3C5 + C7 − 3C8 − 6C9 − 2C10 − T3 + 2T5 + T6 + 2T7 + 2T8 + T9 + T10 + 2T11,

C1 + 2C6 + C9 + C10 − T4 − T9 − T11, T1 − T4 + T6 + T7 − T9 − T11,

T2 − T4 + T8 − T9 + T10 − T11).

In particular the computation of a monomial basis gives us

H4(YA;Z) ' Z, H2(YA;Z) ' Z14, H0(YA;Z) ' Z.

Example 7.6. For the next example we bring back the characteristic varieties of hyper-
plane arrangements. Recall from Chapter 5 that the characteristic variety of the dA3
arrangement has one essential 2-dimensional component, given by

{(t1, . . . , t5) ∈ (C∗)5 | t1 − t4 = 0, t2 − t5 = 0, t3t4t5 − 1 = 0}.

It is not hard to see that it is the intersection of the three layers

K1 = {(t1, . . . , t5) ∈ (C∗)5 | t1t
−1
4 = 1},

K2 = {(t1, . . . , t5) ∈ (C∗)5 | t2t
−1
5 = 1},

K3 = {(t1, . . . , t5) ∈ (C∗)5 | t3t4t5 = 1}.

Therefore we consider the arrangement given by the matrix

MdA3 =



1 0 0

0 1 0

0 0 1

−1 0 1

0 −1 1


.

Obviously we can draw neither the arrangement, nor the fan, but only the poset of
layers (Figure 7.6), which has 8 elements. The fan computed by dcg_algorithm has 30

rays, therefore the cohomology ring is isomorphic to a quotient of

Z[C1, . . . , C30, T1, . . . , T7]
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T

K1 K2 K3

K4 K5 K6

K7

Figure 7.6: Poset of layers for the arrangement given by the matrix MdA3.

by an ideal whose reduced degrevlex Gröbner basis has 435 polynomials. We report
here only the results of normal_basis, for the details refer to [10]:

H10(YA;Z) ' Z,
H8(YA;Z) ' Z29,
H6(YA;Z) ' Z132,
H4(YA;Z) ' Z132,
H2(YA;Z) ' Z29,
H0(YA;Z) ' Z.

Example 7.7. In this last example we show the difference between a wonderful model
computed using the whole C0(A) as building set and the one computed using the
minimal building set. We define the toric braid arrangement TBrm as the arrangement
in (C∗)m with layers

Kij := {t ∈ (C∗)m | ti = tj}

for 1 6 i < j 6 m. The matrix associated with it is

1 1 · · · 1 0 0 · · · 0 · · · 0

−1 0 · · · 0 1 1 · · · 1 · · · 0

0 −1 · · · 0 −1 0 · · · 0 · · · 0

0 0 · · · 0 0 −1 · · · 0 · · · 0
...

... · · ·
...

...
... · · ·

... · · ·
...

0 0 · · · 0 0 0 · · · 0 · · · 1

0 0 · · · −1 0 0 · · · −1 · · · −1


.

We consider the arrangement TBr4 in (C∗)4 with six layers (higher dimensional
ones require too much time to be computed). In Figure 7.7 we show the Hasse diagram
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T

12 13 14 23 24 34

14|23 123 13|24 124 234 12|34 134

1234

Figure 7.7: Poset of layers and minimal well-connected building set for the toric braid
arrangement TBr4 in (C∗)4.

of its poset of layer; the labels of the vertices represent the groups of variables that
are equal (so, for example, 12|34 represents the layer {t ∈ (C∗)4 | t1 = t2, t3 = t4}).
The double-circled vertices correspond to the minimal building set as computed by
minimal_well_connected_building_set.

Let YA(C0) and YA(Gmin) be the wonderful models obtained by choosing as building
sets the whole C0(A) and the minimal building set respectively. We won’t report the
actual ideals here, because they are too big—they can be found in [10]; in the following
table we report just the Betti numbers.

i = 0 2 4 6 8

Hi(YA(C0);Z) 1 43 123 43 1

Hi(YA(Gmin);Z) 1 40 108 40 1

7.3 Towards a Generalization

The fact that we use Lenz’s algorithm for the computation of the poset of layers forces
us to deal only with arrangements that are compatible with Lenz’s definition of “toric
arrangement”, i.e. divisorial ones of the form (7.2). In this section we try to modify
some of the algorithms in order to allow for a more general type of toric arrangements.

The definition of layer (Definition 6.11) is rather difficult to work with, because
of its abstractness. To overcome this problem, we fix coordinates (t1, . . . , tn) on the
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ambient torus T. This way we can identify T with (C∗)n and the group of its character
X∗(T) with Zn. In particular, suppose that K(Γ,ϕ) is a layer and let (a1, . . . ,am) be a
basis of Γ , where

ai = (ai,1, . . . , ai,n) ∈ Zn;

then the layer is described by the system of equations
ta1,11 · · · ta1,nn = b1,
...

tam,11 · · · tam,nn = bm,

where bi = ϕ(ai) ∈ C∗. So we defined three classes to implement toric arrangements
in SageMath: ToricEquation, ToricLayer and ToricArrangement.

Remark. Since the algorithms that we are going to outline depend on the ones in
the previous sections, we cannot work with toric arrangements in full generality; in
particular, the only bi’s that we allow are the roots of unity (of any order).

1 class ToricEquation():

2 def __init__(self,exponents,root=0):

3 self._exponents=exponents

4 self._root=root.numerator().mod(root.denominator())/root.denominato c
r()↪→

5

6 def exponents(self):

7 return self._exponents

8

9 def root(self):

10 return self._root

11

12 def root_order(self):

13 if self._root==0:

14 return 1

15 else:

16 return self._root.denominator()

17

18 def root_exponent(self):

19 if self._root==0:

20 return 0

21 else:

22 return self._root.numerator()
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23

24 def ambient_space_dimension(self):

25 return len(self._exponents)

An instance of a ToricEquation represents a single equation of the form

ta11 · · · t
an
n = b

with a1, . . . , an ∈ Z and b is a root of unity; more precisely, ToricEquation needs two
inputs:

1. a list of integers [a1, . . . , an], representing the exponents a1, . . . , an;

2. a rational number r, with 0 6 r < 1, that represents the complex number
b = e2πir.

The number r can be omitted, in which case it defaults to 0 (i.e. b = 1). Note that r
could be any rational number, but since e2πir = e2πi(r+k) for any k ∈ Z, the initialising
procedure __init__ always reduces it to the interval 0 6 r < 1 (see line 4).

Example 7.8. The call ToricEquation([2,0,-1],1/2) defines an object representing the
equation

t21t
−1
3 = −1.

The actual ToricEquation class defines also a procedure to check equality (two
ToricEquations are equal if and only if they have the same exponents and the same
root). Moreover, it defines a procedure that allows us to compare two equations: we
choose to set

ToricEquation([a1, . . . , an],r) < ToricEquation([b1, . . . , bm],s)

if and only if [a1, . . . , an] < [b1, . . . , bm] in the lexicographic order,§9 or [a1, . . . , an] =

[b1, . . . , bm] and r < s. This total ordering on the ToricEquations is needed to define
equality at ToricLayer level (see below).

The class ToricEquation defines methods to obtain the information stored in a
ToricEquation instance. In the following list, we suppose that the methods are called
on an object initialised as ToricEquation([a1, . . . , an],r).

exponents() Return the list [a1, . . . , an].

root() Return the number r.
§9If L1 = [`1, . . . , `r] and L2 = [m1, . . . ,ms] are two lists, then L1 < L2 in lex order if and only if `1 < m1,

or `1 = m1 and `2 < m2, or `1 = m1, `2 = m2 and `3 < m3, and so on. If the end of one list is reached
without breaking the tie, the shorter list is the lesser one.
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root_order() Return the order of the root of unity, i.e. if r = p/q with GCD(p, q) = 1,
return q.

root_exponent() Return the exponent of the root of unity, i.e. if r = p/q with
GCD(p, q) = 1, return p.

ambient_space_dimension() Return the length of [a1, . . . , an], i.e. n; it is the dimen-
sion of the torus where the equation is defined.

The next class that we define is the one used to represent a single layer; we called it
ToricLayer.

1 class ToricLayer():

2 def __init__(self,equation_list):

3 equation_list=sorted(list(Set(equation_list)))

4 if Set([eq.ambient_space_dimension() for eq in

equation_list]).cardinality()!=1:↪→

5 raise ValueError("equations have different lengths")

6 M=matrix([eq.exponents() for eq in equation_list])

7 eldiv=M.elementary_divisors()

8 if not Set(eldiv).issubset(Set([0,1])):

9 raise ValueError("equations do not define a connected layer")

10 self._equations=equation_list

11 self._ambient_space_dimension=equation_list[0].ambient_space_dimens c
ion()↪→

12

13 def equations(self):

14 return self._equations

15

16 def ambient_space_dimension(self):

17 return self._ambient_space_dimension

18

19 def n_equations(self):

20 return len(self._equations)

A ToricLayer is just a list of ToricEquations. When an instance of ToricLayer is
initialised, the procedure __init__ does some checks in order to make sure that the
layer is well-defined:

1. first of all, the list of equations is sorted (this is possible because ToricEquations
are comparable) and repeated equations are removed, if any;
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2. then the procedure verifies that all the equations live in the same ambient space,
i.e. if all ambient_space_dimensions are the same, and raises an error if this test
fails;

3. after that it checks if the layer is connected by verifying that the lattice generated
by all the exponents of the equations is a split direct summand of Zn; this is
done by computing the elementary divisors of the matrix whose rows are the
exponents (lines 6–7) and verifying that only zeros or ones appear among them
(line 8).

A ToricLayer is defined only if the equations pass all these controls. Once an object of
type ToricLayer is created, we can use the following methods on it.

equations() Return the list of ToricEquations that define the layer.

ambient_space_dimension() Return the dimension of the torus where the layer is
defined; it is the ambient_space_dimension of any of the ToricEquations of the
layer.

n_equations() Return the number of ToricEquations that define the layer.

Moreover, two ToricLayers are defined to be equal if and only if their (ordered) lists
of equations are the same, and we say that

ToricLayer([eq1, . . . , eqh]) < ToricLayer([eq’1, . . . , eq’k])

if and only if [eq1, . . . , eqh] < [eq’1, . . . , eq’k] in the lexicographic order.
The last class that we define is ToricArrangement, which allows us to represent

toric arrangements.

1 class ToricArrangement():

2 def __init__(self,layer_list):

3 if Set([layer.ambient_space_dimension() for layer in

layer_list]).cardinality()!=1:↪→

4 raise ValueError("layers live in different spaces")

5 self._layers=sorted(list(Set(layer_list)))

6 self._ambient_space_dimension=layer_list[0].ambient_space_dimension c
()↪→

7

8 def __add__(self,other):

9 return ToricArrangement(self._layers+other._layers)

10

11 def layers(self):
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12 return self._layers

13

14 def ambient_space_dimension(self):

15 return self._ambient_space_dimension

16

17 def n_layers(self):

18 return len(self._layers)

A ToricArrangement object is defined by a list of ToricLayers. Before creating a
ToricArrangement, the initialising procedure checks if all the layers belong to the same
ambient torus, and raises an error if this control fails. If the layers are compatible,
the procedure sorts the list and removes repetitions before defining the arrangement
(line 5).

Two ToricArrangement objects are considered equal if and only if they have the
same (ordered) list of ToricLayers (this is why we define a comparison procedure
within the class ToricLayer). We defined also a sum of arrangements (method __add__

above): if A1 and A2 are two instances of ToricArrangement, then A1+A2 is the arrange-
ment defined by the union of the layers of A1 and A2.

As before, we define some usual methods to retrieve information from an object of
type ToricArrangement.

layers() Return the list of ToricLayers that define the arrangement.

ambient_space_dimension() Return the dimension of the torus where the arrange-
ment is defined; it is the ambient_space_dimension of any of the ToricLayers of
the arrangement.

n_layers() Return the number of ToricLayers that define the arrangement.

In order to use the algorithms given in the previous sections with the objects of
type ToricArrangement that we just defined, we need to recover a matrix that describes
the arrangement. The idea is the following: if

ta11 · · · t
an
n = (ζq)

p (7.9)

is an equation of a layer of an arrangement A, where ζq = e2πi/q and 0 6 p < q,
we put the list (qa1, . . . , q an) as a column of the matrix.§10 By juxtaposing the lists
obtained from all the equations of all layers in A, we get a matrix M. Now, if we
consider the arrangement AM defined by M as in Equation (7.2), we have that each

§10Actually, there is the possibility that two equations have the same exponents with roots of different
orders. We make sure that the corresponding columns are added to the matrix only once, taking care of
the orders.
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layer of A can be obtained as intersection of some of the 1-codimensional layers of
AM. We keep track of the original layers of A by building a list while defining the
matrix M: the i-th element of this list represents the i-th layer of A, and it is a list itself,
whose j-th element is a pair (k, p) that represents an equation, where k is the index
of the column in M corresponding to the exponents of the equation, and p is the root
exponent as in Equation (7.9).

We encoded the procedure just outlined in a function called matrix_from_toric,
which we don’t report here.

Example 7.9. Let A be the arrangement of (C∗)3 with the three layers

L1 :
{
t21t3 = 1, L2 :

{
t1t

−1
2 = 1,

t1t3 = (ζ3)
2,

L3 :

{
t1t

−1
2 = 1,

t−11 t−22 t3 = 1.

Then the corresponding matrix is

M =


2 1 3 −1

0 −1 0 −2

1 0 3 1


and the layers are described by the list§11[[

(0, 0)
]
,
[
(1, 0), (2, 2)

]
,
[
(1, 0), (3, 0)

]]
.

It is time to see how we modify the algorithms so that they work with this new
setting. As far as the good toric variety XA is concerned, no adjustment is needed: we
apply either dcg_algorithm or smooth_equal_sign_fan (depending on the dimension
of the arrangement) to the set Ξ given by the columns of the matrix obtained from
matrix_from_toric. The poset of layers is a little trickier, so we report the actual code
here and comment it.

1 def poset_of_layers(arr):

2 M,L=matrix_from_toric(arr)

3 P=poset_of_layers_lenz(M)

4 red=[]

5 for p in P[1:]:

6 minimal=[lay for lay in P.level_sets()[1] if P.is_lequal(lay,p)]

7 description=sorted([(lay[0][0],lay[1].lift()[0]) for lay in

minimal])↪→

8 if description in L:

9 red+=[p]

§11Recall that SageMath indexes the list (including the rows and columns of matrices) starting from 0.
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10 for level in P.level_sets()[2:]:

11 for p in level:

12 if p not in red:

13 color=[c for c in red if P.is_lequal(c,p)]

14 if len(color)==0:

15 continue

16 Int=intersection_of_poset_subset(P,color)

17 if p in Int:

18 red+=[p]

19 return P.subposet([P[0]]+red)

At first the algorithm computes the matrix M and the list L as described previously, then
it computes the poset of layers of the arrangement AM using Lenz’s algorithm (line 3).

The poset of layers of arr is a subposet of P = C(AM): we have to identify its
elements. The algorithm will “colour” them in red, so it creates a list red that will
contain them (line 4).

First of all, using the information of the list L, the algorithm identifies the elements
of P that correspond to the layers of arr (lines 5–9), which obviously have to belong to
C(arr). For each element p ∈ P (excluding the whole torus), the algorithm computes
the layers of AM such that p belongs to their intersection (line 6); in line 7 the algorithm
computes a description of p as a list of pairs which is comparable to the ones in
L—in other words, if description = [(i1, p1), . . . , (ik, pk)], then p is obtained as the
intersection of the (pj + 1)-th component among the ones defined by the (ij + 1)-th
column, for j = 1, . . . , k. The algorithm then colours the p’s whose description is in L

(lines 8–9).

The next step is to identify the components corresponding to the intersections of
layers of arr (lines 10–18); the algorithm does this inductively, one level at a time.
Let p be an element of P and suppose that for each element q that belongs to a lesser
level than p we have already decided whether q is red or not. If p is already red, the
algorithm continues; otherwise, it computes the set of the red elements which are less
than or equal to p (that is to say, the red layers that contain it). If p is contained in no
red layer, the algorithm discards it (lines 14–15); otherwise, it computes the intersection
of those layers and verifies that p is indeed a connected component of this intersection,
eventually adding it to the red list.

Example 7.10. Consider the arrangement A in (C∗)3 defined by the layers

L1 :
{
t22t

−3
3 = 1, L2 :

{
t1 = 1, L3 :

{
t1t3 = −1,

t21t2 = 1.
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The matrix obtained from matrix_from_toric is

M =


0 1 2 2

2 0 0 1

−3 0 2 0


which defines an arrangement AM with five layers

E1 : t
2
2t

−3
3 = 1,

E2 : t1 = 1,

E3 : t1t3 = 1,

E4 : t1t3 = −1,

E5 : t
2
1t2 = 1.

In Figure 7.8 on the left we have the poset of layers of AM. The layers of A can be
identified easily in this poset:

L1 ↔ E1,

L2 ↔ E2,

L3 ↔ H9 = E4 ∩ E5.

The result of the algorithm is the subposet given by the highlighted elements, which is
drawn more clearly on the right of Figure 7.8.

T

E1 E2 E3 E4 E5

H1 H2 H3 H4 H5 H6 H7 H8 H9

P1 P2 P3 P4 P5 P6 P7 P8

T

E1 E2

H1 H9

P7 P8

Figure 7.8: Posets for the arrangement of Example 7.10. On the left: poset of layers of
AM, with layers of C(A) highlighted. On the right: poset of layers of A.
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The last remarkable difference between the algorithms of Section 7.1 and this one
is in the minimal_well_connected_building_set algorithm (see page 113). In line 3

of that algorithm we initialise G as P.level_sets()[1], because that level set contains
exactly the layers of the arrangement. This is no longer true in general: for example
it can happen that one layer of the toric arrangement is contained in another one (for
example, an arrangement may have both {t1 = 1, t2 = 1} and {t1 = 1} as layers), so that
the second layer belongs to a higher level set.

The solution actually is quite easy: we have to identify the layers of the original
arrangement. Lines 4–9 of the algorithm poset_of_layers do exactly that, so we
change line 3 of minimal_well_connected_building_set with those lines.

Once that we have the fan associated with the variety XA, the poset of layers
C(A) and a (minimal) well-connected building set G, we can use the algorithm
wonderful_cohomology_ring almost as it is, only with small technical adjustments
(for example in the bases_dictionary procedure), because those are the only informa-
tion needed by that algorithm.

Example 7.11. Let’s get back to the arrangement of Example 7.10. We want to compute
the presentation of H∗(YA;Z) where YA is built using the minimal well-connected
building set. With reference to Figure 7.8, it is not hard to see that this building set is
G = {E1, E2, H9}: the three layers of A have to be included in G and their intersections
are all connected, so they are included in G if and only if they are not transversal. In
this case

codim(H1) = 2 = 1+ 1 = codim(E1) + codim(E2),

codim(P7) = 3 = 1+ 2 = codim(E1) + codim(H9),

codim(P8) = 3 = 1+ 2 = codim(E2) + codim(H9),

so no other element of C0(A) belongs to G. After a little computation, we get that

• the fan ∆ computed using dcg_algorithm has 34 rays, therefore H∗(YA;Z) is a
quotient of Z[C1, . . . , C34, T1, T2, T3];

• a reduced Gröbner basis of the relations ideal has 522 polynomials (we won’t
write them here, check [10] if you want to see them);

• the Betti numbers of YA are

H6(YA;Z) ' Z, H4(YA;Z) ' Z32, H2(YA;Z) ' Z32, H0(YA;Z) ' Z.

In conclusion, with the algorithms outlined in this chapter we are able to compute
projective wonderful models (using arbitrary building sets) and their integer cohomol-
ogy rings for toric arrangements with layers of any codimension, when the equations
involved have the form

ta11 · · · t
an
n = ζ
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where ζ is any root of unity. There is a limitation, though: even not so big arrangements
may give rise to ideals with a huge number of generators (for example, we tried to
compute the cohomology of YA for A = TBr5,§12 but the relations involved were more
than 33 millions and our computer did not manage to finish the computation). In the
future we hope to improve our algorithms to make them more efficient from this point
of view.

§12See Example 7.7 for the definition of the toric braid arrangement TBrm.
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